Math 4001-5001: HW4

Due Friday, 9/27/2019

Problem 4.1

Prove Theorem 3.42.

Problem 4.2

In this problem we investigate a rearrangement of conditionally convergent series. First recall the rearrangement $\left\{k_{n}\right\}$ of natural numbers

$$
1,2,4,3,6,8,5,10,12, \ldots
$$

In words: every odd number is followed by two adjacent even numbers.
a. Use $\left\{k_{n}\right\}$ to rearrange the alternating harmonic series

$$
\begin{equation*}
\sum_{n=1}^{\infty}(-1)^{n-1} \frac{1}{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots \tag{1}
\end{equation*}
$$

(Just write down the first few terms; you do not need a general formula for each a_{n}^{\prime}.)
b. Derive formulas for partial sums of the rearrangement: show using induction that for $n \geq 3$ written as $n=3 k+\ell$, where $k \geq 1$ and $\ell=0,1$, or 2 , the partial sum of the rearrangement is given by

$$
s_{n}=1-\frac{1}{2}-\frac{1}{4}+\cdots+\frac{1}{2 k-1}-\frac{1}{4 k-2}-\frac{1}{4 k}+r_{n}
$$

where the remainder r_{n} consists of the next $\ell(=0,1,2)$ terms in the partial sum.
c. Show r_{n} goes to zero as $n \rightarrow \infty$.
d. Group the terms of the partial sum (the associative law applies!) so you can show that for $n=3 k+\ell$ as above

$$
\begin{equation*}
s_{n}=\frac{1}{2}-\frac{1}{4}+\frac{1}{6}-\frac{1}{8}+\cdots+\frac{1}{4 k-2}-\frac{1}{4 k}+r_{n} . \tag{2}
\end{equation*}
$$

e. Within s_{n} in the equation (2) find a partial sum of (1) (The word "within" is purposely vague, so you can be more creative.). Take n to infinity. What does the rearrangement of the series in (1) converge to?

Problem 4.3

Prove Theorem 3.55: apply a direct ϵ and N argument to show that s_{n}^{\prime} converges to $s=\sum a_{n}$.

Problem 4.4

Prove Theorem 7.9.

