Math 4001-5001: HW4
Due Friday, 9/27/2019

Problem 4.1
Prove Theorem 3.42.

Problem 4.2
In this problem we investigate a rearrangement of conditionally convergent series. First recall the rear-
rangement {k,} of natural numbers

1,2,4,3,6,8,5,10,12,....
In words: every odd number is followed by two adjacent even numbers.

a. Use {k,} to rearrange the alternating harmonic series
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(Just write down the first few terms; you do not need a general formula for each al,.)

b. Derive formulas for partial sums of the rearrangement: show using induction that for n > 3 written
asn =3k + ¥, where k> 1 and £ = 0,1, or 2, the partial sum of the rearrangement is given by
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where the remainder r,, consists of the next (= 0,1, 2) terms in the partial sum.
c. Show r,, goes to zero as n — oo.

d. Group the terms of the partial sum (the associative law applies!) so you can show that for n = 3k +¢

as above
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e. Within s, in the equation find a partial sum of (The word “within” is purposely vague, so
you can be more creative.). Take n to infinity. What does the rearrangement of the series in
converge to?

Problem 4.3
Prove Theorem 3.55: apply a direct € and N argument to show that s/, converges to s =Y ay.

Problem 4.4
Prove Theorem 7.9.



