Math 4001-5001: HW2

Due Friday, 9/13/2019

Problem 2.1

Discuss the convergence or divergence of the following series (you can assume all the series start at $n=1$):
a. $\sum a_{n}, a_{n}=\frac{1}{1+n^{2}}$
b. $\sum a_{n}, a_{n}=\frac{1}{1+n}$
c. $\sum a_{n}, a_{n}=\frac{1}{3^{n}-1}$
d. $\sum a_{n}, a_{n}=\frac{1}{2 n^{3}-29}$

Problem 2.2

Suppose the series $\sum c_{n}$ and $\sum d_{n}$ converge to the same value s. Show that if

$$
\sum_{n=1}^{N} c_{n} \leq \sum_{n=1}^{N} a_{n} \leq \sum_{n=1}^{N} d_{n}
$$

for all $N \geq 1$, then the series $\sum a_{n}$ also converges, and it converges to s.

Problem 2.3

If the a_{n} form a nonincreasing sequence of nonnegative numbers, i.e., $a_{n} \geq a_{n+1} \geq 0$, and d is a fixed natural number such that $d>1$, show that $\sum_{n=1}^{\infty} a_{n}$ converges if and only if the series $\sum_{k=0}^{\infty} d^{k} a_{d^{k}}$ converges.

Problem 2.4

Let l_{1} be the set of real valued sequences $\left\{x_{n}\right\}$ such that $\sum_{n=1}^{\infty}\left|x_{n}\right|$ is convergent, and l_{2} be the set of real valued sequences $\left\{x_{n}\right\}$ such that $\sum_{n=1}^{\infty}\left(x_{n}\right)^{2}$ is convergent, i.e.,

$$
\begin{aligned}
& l_{1}=\left\{\left\{x_{n}\right\} \subset \mathbb{R}: \sum_{n=1}^{\infty}\left|x_{n}\right|<\infty\right\} \\
& l_{2}=\left\{\left\{x_{n}\right\} \subset \mathbb{R}: \sum_{n=1}^{\infty}\left(x_{n}\right)^{2}<\infty\right\}
\end{aligned}
$$

Show $l_{1} \subset l_{2}$.

