Math 4001-5001: HW10

Due Friday, 11/15/2019

Problem 10.1 Let $f: \mathbb{R} \rightarrow \mathbb{R}$.
a. If $f \in C^{1}(\mathbb{R})$ and $f^{\prime}(x) \neq 1$ for every x, show that f has at most one fixed point.
b. Let $f(x)=x+\left(1+e^{x}\right)^{-1}$. Show f has no fixed point even though $0<f^{\prime}(x)<1$ for all x (you need to show the lack of the fixed point and the property of the derivative).
c. Now suppose there is $M<1$ such that $\left|f^{\prime}(x)\right| \leq M$ for all x. Show there exists a unique fixed point.

Problem 10.2 Let $E, F \subset \mathbb{R}^{n}$ such that E, F are open. Suppose f is a bijection from E onto F, $f \in C^{1}(E)$, and $f^{-1} \in C^{1}(F)$ (i.e., f is a diffeomorphism from E onto F). Prove that at each $x \in E, f^{\prime}(x)$ is an isomorphism of \mathbb{R}^{n}.

Problem 10.3 Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by $f(r, \theta)=(x(r, \theta), y(r, \theta))=(r \cos \theta, r \sin \theta)$.
a. Compute the Jacobian matrix of f, i.e., $\left(\partial_{j} f_{i}\right)$.
b. Use a theorem from class to say at which points f is differentiable and why.
c. Compute the determinant of the Jacobian matrix of f (also simply called the Jacobian of f).
d. Use a theorem from class to find (familiar) subsets of \mathbb{R}^{2}, E, F such that f is a diffeomorphism of E onto F.

Problem 10.4 Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by $f(x, y)=\left(e^{y} \cos x, e^{y} \sin x\right)$. Show $\operatorname{det} f^{\prime}(x, y) \neq 0$ for all (x, y), but f is not $1-1$. Why does this not contradict the Inverse Function Theorem?

