Math 4001-5001: HW1

Due Friday, 9/06/2019

Problems from the book:

p. 23: 13 (instead of x,y being complex suppose $x,y\in \mathbb{R}^k,k\geq 1.)$ p. 78: 1, 20

Problem 1.1

- a. Let $x \in \mathbb{R}^k$ and define $||x||_1 = \sum_{i=1}^k |x_i|$. Show $||\cdot||_1$ is a norm on \mathbb{R}^k .
- b. Show $\sum_{i=1}^{k} |x_i| \le \sqrt{k} |x|$ for any $x = (x_1, \dots, x_k)$.
- c. If X is a vector space and $|| \cdot ||$ and $|| \cdot ||_2$ are two norms on X, they are said to be *equivalent* if there exist constants c, d > 0 such that

 $c||x|| \le ||x||_2 \le d||x||$ for every $x \in X$.

Show $|| \cdot ||_1$ is equivalent to the standard Euclidean norm on \mathbb{R}^k .

Problem 1.2

Suppose X is a normed linear space with a norm $|| \cdot ||$. Show X is a metric space.

Problem 1.3

Let $k \geq 2$. Use that \mathbb{R} is complete to show \mathbb{R}^k is complete.