University of Colorado Boulder Math 5001, Midterm, Part 1, In-Class

Fall 2019

NAME: Solutions

Question	Points	Score
1	20	
2	20	
3	20	
Total:	60	

• Read instructions carefully. Show all your reasoning and work for full credit unless indicated otherwise.

- 1. (20 points) Short answer questions.
 - (a) (2 pts) [2 pts correct; -2 pts incorrect, 1 pts blank] True or False (no work is needed): Let k be a fixed positive integer, then \mathbb{R}^k is complete.

(b) (10 pts) Finish the definition and then write the Cauchy criterion for convergence: A series Σa_n converges if and only if the sequence of partial sums converges.

Cauchy criterion for convergence: Let
$$\epsilon > 0$$
, then the series Σa_n converges if
 $\exists N \quad s.t. \quad if \quad m \ge n \ge N_1 \quad the n$
 $\left| \sum_{i=n}^{\infty} \alpha_i \right| < \mathcal{E}$.

(c) (4 pts) True or False (no work is needed): Given the alernating harmonic series $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n!}$

$$\sum_{n=1}^{n} (-1)^n \frac{1}{n},$$

there exists a rearrangement of the series such that it converges to $tan(sinh(cos(\pi e)))$.

(d) (4 pts) Finish the statement of the Arzela-Ascoli Theorem: Let K be a compact metric space. A set A in C(K) is compact if and only $\stackrel{\circ}{\leftarrow} \stackrel{\circ}{\leftarrow}$

A is closed, bounded & equicontinnons.

2. (20 points) (a) Prove or disprove: the following series converges (you can quote any theorem from class):

$$\sum_{n=1}^{\infty} \frac{1}{n+n^{\frac{3}{2}}}$$
The serves converges by the comparison
test w/ the p serves w/ $p = \frac{3}{2}$,
b/c we have
 $\frac{1}{n+n^{3/2}} < \frac{1}{n^{3/2}}$ ($\langle z \rangle n^{3/2} < n+n^{3/2} \forall n \ge 1$)

(b) Show that if in the ratio test one can take a true limit (not just lim sup) and obtain 1, then the root test will also give 1.

Proof:
This follows from This 0.1 in the back
$$\mathcal{L}$$

the fact that $\operatorname{Uninf} \leq \operatorname{Umsnp} \mathcal{A}$
 $\exists f \left(\operatorname{Um} \left| \frac{a_{n+1}}{a_n} \right| = 1$, then
 $\operatorname{Um} \operatorname{inf} \left| \frac{a_{n+1}}{a_n} \right| = \operatorname{Umsnp} \left| \frac{a_{n+1}}{a_n} \right| = 1$,
 $\operatorname{Um} \operatorname{inf} \left| \frac{a_{n+1}}{a_n} \right| = \operatorname{Umsnp} \left| \frac{a_{n+1}}{a_n} \right| = 1$,
 So by (6.1), (0,2) $\mathcal{L}(\mathcal{A})$, we have
 So by (6.1), $(0,2) \mathcal{L}(\mathcal{A})$, we have
 $\operatorname{Um} \mathcal{M} \mathcal{A}_n = 1 \implies \operatorname{Umsnp} \mathcal{M} \mathcal{A}_n = 1$.

3. (20 points) Consider the following space:

 $C^1([0,1]) = \{ f: [0,1] \to \mathbb{R}: f \text{ and } f' \text{ are continuous on } [0,1] \}.$

Let

$$||f|| = ||f||_{\infty} + ||f'||_{\infty}.$$
(0.1)

Using that $|| \cdot ||_{\infty}$ defines a norm on C([0,1]), one can show (0.1) defines a norm on $C^1([0,1])$.

Show $C^1([0,1])$ is a complete space with this norm. (You can quote any theorem from class.)

Roof: Lit (f) be a Candry sequence in C.
Then
$$\forall \geq > 0 \exists N \text{ s.t. it min } \geq N_1$$
 then
 $\|f_n - f_m\|_{\mathcal{B}} + \|f_n' - f_m'\|_{\mathcal{D}} < \Sigma$.
This nears $\{f_n\} \in \{f_n'\}$ are Candry in $\|\cdot\|_{\mathcal{D}}$.
 $B/C C(CO_11)$ is a Banach space 1
 $f_n \rightarrow f$ in $\|\cdot\|_{\mathcal{D}}$ for some $f \in C(CO_11)$
and $f_n' \rightarrow g$ in $\|\cdot\|_{\mathcal{D}}$ for some $f \in C(CO_11)$.
 $B/C f_n \rightarrow f$ in $\|\cdot\|_{\mathcal{D}}$, \mathcal{H} converges $f_{\text{wise}} \neq x_0 \in CO_11$.
 $B/C f_n \rightarrow f$ in $\|\cdot\|_{\mathcal{D}}$, \mathcal{H} converges $f_{\text{wise}} \neq x_0 \in CO_11$.
 $B/C f_n \rightarrow f$ in $\|\cdot\|_{\mathcal{D}}$, \mathcal{H} converges $f_{\text{wise}} \neq x_0 \in CO_11$.
 $B/C f_n \rightarrow f$ in $\|\cdot\|_{\mathcal{D}}$, \mathcal{H} converges f_{wise} and
 $f_n' = f'$. And $b/c g \in C(CO_11)$, the
 $g = f'$. And $b/c g \in C(CO_11)$ as needed.

Theorems that may or may not be useful:

Theorem 0.1. For any sequence $\{c_n\}$ of positive numbers,

$$\liminf \frac{c_{n+1}}{c_n} < \liminf \sqrt[n]{c_n}, \tag{0.2}$$

$$\limsup \sqrt[n]{c_n} < \limsup \frac{c_{n+1}}{c_n}.$$
(0.3)

Theorem 0.2. Suppose $\{f_n\}$ is a sequence of functions, differentiable on [a, b] and such that $\{f_n(x_0)\}$ converges for some point x_0 on [a, b]. If $\{f'_n\}$ converges uniformly on [a, b], then $\{f_n\}$ converges uniformly on [a, b], to a function f, and

$$f'(x) = \lim_{n \to \infty} f'_n(x), \quad (a \le x \le b).$$