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Math 4001 Midterm, Part 1, In-class Fall 2019

1. (20 points) Short answer questions.

(a) (2 pts) [2 pts correct; -2 pts incorrect, 1 pts blank] True or False (no work is

needed): Let k be a fixed positive integer, then Rk is complete.

(b) (10 pts) Finish the definition and then write the Cauchy criterion for convergence:

A series ⌃an converges if and only if

Cauchy criterion for convergence: Let ✏ > 0, then the series ⌃an converges if

(c) (4 pts) True or False (no work is needed): Given the alernating harmonic series

1X

n=1

(�1)n
1

n
,

there exists a rearrangment of the series such that it converges to tan(sinh(cos(⇡e))).

(d) (4 pts) Finish the statement of the Arzela-Ascoli Theorem: Let K be a compact

metric space. A set A in C(K) is compact if and only

Page 1 of 4

the sequence
of partial sums converges .

F N s
.t

.
if wish IN

,
then

I
.

ails E .

if

A is closed ,
bounded & eguekoutinnons .



2. (20 points) (a) Prove or disprove: the following series converges (you can quote any

theorem from class):
1X

n=1

1

n+ n
3
2

(b) Show that if in the ratio test one can take a true limit (not just lim sup) and obtain

1, then the root test will also give 1.
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3. (20 points) Consider the following space:

C1([0, 1]) = {f : [0, 1] ! R : f and f 0 are continuous on [0, 1]}.

Let

||f || = ||f ||1 + ||f 0||1. (0.1)

Using that || · ||1 defines a norm on C([0, 1]), one can show (0.1) defines a norm on

C1([0, 1]).

Show C1([0, 1]) is a complete space with this norm. (You can quote any theorem from

class.)
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Theorems that may or may not be useful:

Theorem 0.1. For any sequence {cn} of positive numbers,

lim inf
cn+1

cn
< lim inf n

p
cn, (0.2)

lim sup n
p
cn < lim sup

cn+1

cn
. (0.3)

Theorem 0.2. Suppose {fn} is a sequence of functions, di↵erentiable on [a, b] and such

that {fn(x0)} converges for some point x0 on [a, b]. If {f 0
n} converges uniformly on [a, b],

then {fn} converges uniformly on [a, b], to a function f , and

f 0(x) = lim
n!1

f 0
n(x), (a  x  b).
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