University of Colorado Boulder Math 4001, Midterm, Part 1, In-class

Fall 2019

NAME:

Question	Points	Score
1	20	
2	20	
3	20	
Total:	60	

- No notes, textbooks, and no calculators or any electronic devices are allowed at any time.
- Read instructions carefully. Show all your reasoning and work for full credit unless indicated otherwise.

1. (20 points) Short answer questions.
(a) (2 pts) [2 pts correct; - 2 pts incorrect, 1 pts blank] True or False (no work is needed): Let k be a fixed positive integer, then \mathbb{R}^{k} is complete.
(b) (10 pts) Finish the definition and then write the Cauchy criterion for convergence: A series Σa_{n} converges if and only if the sequence of partial sums converges.

Cauchy criterion for convergence: Let $\epsilon>0$, then the series Σa_{n} converges if $\exists N$ st. if $m \geq n \geq N$, then

$$
\left|\sum_{i=n}^{m} a_{i}\right|<E
$$

(c) (4 pts) True or False (no work is needed): Given the alernating harmonic series

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n}
$$

there exists a rearrangment of the series such that it converges to $\tan (\sinh (\cos (\pi e)))$.
(d) (4 pts) Finish the statement of the Arzela-Ascoli Theorem: Let K be a compact metric space. A set A in $C(K)$ is compact if and only if
Aiscosed bounded e equcontinnons.
2. (20 points) (a) Prove or disprove: the following series converges (you can quote any theorem from class):

$$
\sum_{n=1}^{\infty} \frac{1}{n+n^{\frac{3}{2}}}
$$

The series converges by the comparison test $w /$ the p series $w / p=\frac{3}{2} 1$
b/c we have

$$
\begin{aligned}
& \text { C we have } \\
& \frac{1}{n+n^{3 / 2}}<\frac{1}{n^{3 / 2}}\left(\Leftrightarrow n^{3 / 2}<n+n^{3 / 2} \forall n \geq 1\right)
\end{aligned}
$$

(b) Show that if in the ratio test one can take a true limit (not just limsup) and obtain 1 , then the root test will also give 1 .
Pout:
This follows from Thu 0.1 in the back e \& the fact the limint \leq limsup. (())
If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=1$, then

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \sin \left|\frac{a_{n+1}}{a_{n}}\right|=1 \\
& \text { so by }(0.1),(0,2) \&(\ngtr) \text {, we have } \\
& \lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=1 \Rightarrow \operatorname{limsip}_{n \rightarrow \infty} \sqrt[n]{a_{n}}=1
\end{aligned}
$$

3. (20 points) Consider the following space:

$$
C^{1}([0,1])=\left\{f:[0,1] \rightarrow \mathbb{R}: f \text { and } f^{\prime} \text { are continuous on }[0,1]\right\}
$$

Let

$$
\|f\|=\|f\|_{\infty}+\left\|f^{\prime}\right\|_{\infty} .
$$

Show this defines a norm on $C^{1}([0,1])$. (You can use that $\|\cdot\|_{\infty}$ defines a norm on $C([0,1])$.
First, we observe $\|f\| \geq 0$ since $\left.\|g\|_{\infty} \geqslant 0 \quad \forall g:[0],\right] \rightarrow R$. Second, we have $\|f\|<\infty, b / c \quad f \& f^{\prime}$ are cont.on

Next, we show $\|\lambda f\|=|\lambda|\|f\|$.

$$
\begin{aligned}
& \text { we show }\|\lambda f\|^{\prime}=|\lambda|\|J\|^{\prime} \\
& \begin{aligned}
\|\lambda f\|^{\prime}=\|\lambda f\|_{\infty}+\left\|(\lambda f)^{\prime}\right\|_{\infty} & =|\lambda|\|f\|_{\infty}+\left\|\lambda f^{\prime}\right\|_{\infty} \\
& =|\lambda|\left(\|f\|_{\infty}+\left\|f^{\prime}\right\|_{\infty}\right)
\end{aligned}
\end{aligned}
$$

(bIc $\|\cdot\|_{\infty}$ is a horme
To see $\|f\|=0 \Leftrightarrow f=0$ on $[0,1]$,
it $f=0$ on $[0,1]$, then $f^{\prime}=0$ on $[0,1]$,
so $\|f\|=\|0\|_{\infty}+\|O\|_{\infty}=0$.
Next it $\|f\|=0$, we have $\|f\|_{\infty}=0 \&\|f\|_{\infty}=0$.
$B / C 11 \cdot 11_{p}$ is a norm $f=0$ on $[0,1]$
rand $f^{\prime}=0$, but we already have $f=0$),
Finchy, for te trimafle inequality,

$$
\begin{align*}
\|f+g\| & =\|f+g\| \infty+\left\|(f+g)^{\prime}\right\|_{\infty} \\
& =\|f+g\|_{\infty}+\left\|f^{\prime}+g^{\prime}\right\|_{\infty} \\
& \leq\|f\|_{\infty}+\left\|g_{\infty}+\right\| f^{\prime}\left\|_{\infty}+\right\| g^{\prime} \|_{\infty} \\
& =\|f\|+\|g\|_{\text {Page 3 of } 4} \text { as needed. }
\end{align*}
$$

$$
\begin{aligned}
& 11 \cdot \\
& \text { is a norm) } \\
& \text { is }
\end{aligned}
$$

Page 3 of 4

Theorems that may or may not be useful:
Theorem 0.1. For any sequence $\left\{c_{n}\right\}$ of positive numbers,

$$
\begin{array}{r}
\lim \inf \frac{c_{n+1}}{c_{n}}<\lim \inf \sqrt[n]{c_{n}} \\
\lim \sup \sqrt[n]{c_{n}}<\lim \sup \frac{c_{n+1}}{c_{n}} \tag{0.2}
\end{array}
$$

Theorem 0.2. Suppose $\left\{f_{n}\right\}$ is a sequence of functions, differentiable on $[a, b]$ and such that $\left\{f_{n}\left(x_{0}\right)\right\}$ converges for some point x_{0} on $[a, b]$. If $\left\{f_{n}^{\prime}\right\}$ converges uniformly on $[a, b]$, then $\left\{f_{n}\right\}$ converges uniformly on $[a, b]$, to a function f, and

$$
f^{\prime}(x)=\lim _{n \rightarrow \infty} f_{n}^{\prime}(x), \quad(a \leq x \leq b)
$$

