University of Colorado Boulder Math 4001, Midterm, Part 1, In-class

Fall 2019

NAME: Solutions

Question	Points	Score
1	20	
2	20	
3	20	
Total:	60	

- No notes, textbooks, and no calculators or any electronic devices are allowed at any time.
- Read instructions carefully. Show all your reasoning and work for full credit unless indicated otherwise.

- 1. (20 points) Short answer questions.
 - (a) (2 pts) [2 pts correct; -2 pts incorrect, 1 pts blank] True or False (no work is needed): Let k be a fixed positive integer, then \mathbb{R}^k is complete.

(b) (10 pts) Finish the definition and then write the Cauchy criterion for convergence: A series Σa_n converges if and only if the sequence of partial sums converges.

Cauchy criterion for convergence: Let
$$\epsilon > 0$$
, then the series Σa_n converges if
 $\exists N \quad s.t. \quad if \quad m \ge n \ge N_1 \quad the n$
 $\left| \sum_{i=n}^{\infty} \alpha_i \right| < \mathcal{E}$.

(c) (4 pts) True or False (no work is needed): Given the alernating harmonic series $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n!}$

$$\sum_{n=1}^{n} (-1)^n \frac{1}{n},$$

there exists a rearrangement of the series such that it converges to $tan(sinh(cos(\pi e)))$.

(d) (4 pts) Finish the statement of the Arzela-Ascoli Theorem: Let K be a compact metric space. A set A in C(K) is compact if and only $\stackrel{\circ}{\leftarrow} \stackrel{\circ}{\leftarrow}$

A is closed, bounded & equicontinnons.

2. (20 points) (a) Prove or disprove: the following series converges (you can quote any theorem from class):

$$\sum_{n=1}^{\infty} \frac{1}{n+n^{\frac{3}{2}}}$$
The serves converges by the comparison
test w/ the p serves w/ $p = \frac{3}{2}$,
b/c we have
 $\frac{1}{n+n^{3/2}} < \frac{1}{n^{3/2}}$ (<=> $n^{3/2} < n+n^{3/2} \forall n \ge 1$)

(b) Show that if in the ratio test one can take a true limit (not just lim sup) and obtain 1, then the root test will also give 1.

Proof:
This follows from This 0.1 in the back
$$\mathcal{L}$$

the fact that $\operatorname{Uninf} \leq \operatorname{Umsnp} \mathcal{A}$
 $\exists f \left(\operatorname{Um} \left| \frac{a_{n+1}}{a_n} \right| = 1$, then
 $\operatorname{Um} \operatorname{inf} \left| \frac{a_{n+1}}{a_n} \right| = \operatorname{Umsnp} \left| \frac{a_{n+1}}{a_n} \right| = 1$,
 $\operatorname{Um} \operatorname{inf} \left| \frac{a_{n+1}}{a_n} \right| = \operatorname{Umsnp} \left| \frac{a_{n+1}}{a_n} \right| = 1$,
 So by (6.1), (0,2) $\mathcal{L}(\mathcal{A})$, we have
 So by (6.1), $(0,2) \mathcal{L}(\mathcal{A})$, we have
 $\operatorname{Um} \mathcal{M} \mathcal{A}_n = 1 \implies \operatorname{Umsnp} \mathcal{M} \mathcal{A}_n = 1$.

3. (20 points) Consider the following space:

$$C^{1}([0,1]) = \{ f : [0,1] \to \mathbb{R} : f \text{ and } f' \text{ are continuous on } [0,1] \}.$$

Let

$$||f|| = ||f||_{\infty} + ||f'||_{\infty}.$$

Show this defines a norm on $C^1([0,1])$. (You can use that $|| \cdot ||_{\infty}$ defines a norm on C([0,1]).)

First, we observe
$$\|f\| \ge 0$$
 since $\|g\|_{\infty} = 0 + g$.color a
Second, we have $\|f\| \ge 0$, blo $f \ge f'$ are cont. on
Next, we show $\|\lambda f\| \ge |\lambda| \|f\|$. Co₁[].
Next, we show $\|\lambda f\| \ge |\lambda| \|f\|$. Co₁[].
Next, we show $\|\lambda f\| \ge |\lambda| \|f\|$.
 $\|\lambda f\| \ge \|\lambda f\|_{\infty} + \|(\lambda f)\|_{\infty} = \|\lambda| \|f\|\|_{\infty} + \|\lambda f'\|_{\infty}$
 $= \|\lambda| (\|f\||_{\infty} + \|f\||_{\infty})$
(blo $\|\cdot\||_{\infty} + \|f\||_{\infty})$
(blo $\|\cdot\||_{\infty} + \|f\||_{\infty}$)
if $f = 0$ on Co_{1}], the $f'=0$ on Co_{1}], $\|\lambda g\||_{\infty} = \|\lambda| \|g\||_{\infty}$
if $f = 0$ on Co_{1}], the $f'=0$ on Co_{1}],
so $\|f\| = \|0\||_{\infty} + \|0\||_{\infty} = 0$.
Next if $\|f\|\|_{\infty} = 0$, we have $\|f\||_{\infty} = 0 \in \|ff\||_{\infty} = 0$.
Next if $\|f\|\|_{\infty} = 0$, we have $\|f\||_{\infty} = 0 \notin Co_{1}$]
Finally, for the triangle ingradity,
 $\|f\| + g\||_{\infty} = \|f + g\||_{\infty} + \|ff + g'\||_{\infty}$
 $\le \|f\||_{\infty} + \|g\||_{\infty} + \|f\| + \|g'\||_{\infty}$ (b/c
 $\le \|f\||_{\infty} + \|g\||_{\infty} + \|f'\||_{\infty} + \|g'\||_{\infty}$ (b/c
 $= \|f\||_{\infty} + \|g\||_{\infty} + \|f'\||_{\infty} + \|g'\||_{\infty}$

Theorems that may or may not be useful:

Theorem 0.1. For any sequence $\{c_n\}$ of positive numbers,

$$\liminf \frac{c_{n+1}}{c_n} < \liminf \sqrt[n]{c_n},\tag{0.1}$$

$$\limsup \sqrt[n]{c_n} < \limsup \frac{c_{n+1}}{c_n}.$$
(0.2)

Theorem 0.2. Suppose $\{f_n\}$ is a sequence of functions, differentiable on [a, b] and such that $\{f_n(x_0)\}$ converges for some point x_0 on [a, b]. If $\{f'_n\}$ converges uniformly on [a, b], then $\{f_n\}$ converges uniformly on [a, b], to a function f, and

$$f'(x) = \lim_{n \to \infty} f'_n(x), \quad (a \le x \le b).$$