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Introduction

I Ultimate goal is to learn Lebesgue integration.
I Lebesgue integration uses the concept of a measure.
I Before we define Lebesgue integration, we define one

concrete measure, which is the Lebesgue measure for sets
in Rn.

I Then, when we start talking about the Lebesgue
integration, we can think about abstract measures or have
this concrete example of the Lebesgue measure in mind.

I The proofs omitted in lecture will be either left as
homework, exercise or you will not be responsible for
knowing the proof.
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Intro to measure theory

I Not every set has a well defined Lebesgue measure, so
when we define Lebesgue measure we also talk about a
family of sets for which the measure is well defined.

I In fact, this idea shows up in abstract measure theory:
family of sets for which the abstract measure is defined.

I So we will discuss:
I families of sets
I what is a definition of a measure



Intro to measure theory: ring of sets
Let A and B be two sets. Recall

A− B = {x : x ∈ A, x /∈ B}.

Note B does not have to be contained in A to consider A− B.

Definition
A family R of sets is a ring if and only if A,B ∈ R, then

A ∪ B ∈ R, and A− B ∈ R.

Theorem
Let R be a ring, and A,B ∈ R, then

A ∩ B ∈ R.

Proof.
Obvious once we observe that A ∩ B can be written as
A− (A− B).



Intro to measure theory: σ-rings

Definition
A ring R is a σ−ring if and only if ∪∞i=1Ai ∈ R whenever Ai ∈ R
for all i .
(So a σ-ring is a ring that is closed under countable unions.)

Theorem
Let R be a σ-ring, and Ai be a collection of sets such that
Ai ∈ R for all i, then

∩∞i=1Ai ∈ R.

Proof.
Exercise.
Remark: Eventually we will discuss a σ-ring of Lebesgue
measurable sets. Right now we are just collecting definitions,
and keeping everything abstract, so if we wanted to, we could
define other measures besides the Lebesgue measure.



Set functions on R (secretly: within those are
candidates for measures)

Definition
A function φ : R → [−∞,∞] is called a set function on R.
A set function can be additive or countably additive (or neither).

Definition
A set function φ : R → [−∞,∞] is called an additive set
function on R if and only if

φ(A ∪ B) = φ(A) + φ(B) whenever A ∩ B = 0.



Set functions on R (secretly: within those are
candidates for measures)

Definition
A function φ : R → [−∞,∞] is called a set function on R.
A set function can be additive or countably additive (or neither).

Definition
A set function φ : R → [−∞,∞] is called an additive set
function on R if and only if

φ(A ∪ B) = φ(A) + φ(B) whenever A ∩ B = 0.



Countably additive set functions
Definition
A set function φ : R → [−∞,∞] is called a countably additive
set function on R if and only if

φ(∪∞i=1Ai) = Σ∞i=1φ(Ai), (1)

whenever Ai ∩ Aj = 0, i 6= j .

I The left hand side is φ of the union of sets, and φ is assumed to
be well-defined on R, so φ of the union must belong to the
extended number system [−∞,∞].

I So this says that the partial sums of the infinite series on the
right hand side must either converge to something finite or∑n

i=1 φ(Ai )→∞ or −∞ as n→∞ (e,g, the limit cannot
oscillate, b/c of the previous bullet point).

I Hence we can write:
∑n

i=1 φ(Ai )→
∑∞

i=1 φ(Ai ) as n→∞ in both
situations, i.e., if the series converges or if it diverges to ±∞.

I Because the left hand side of (1) is the same for any rearrangement of sets Ai , if the right hand side

converges, it converges absolutely (Rudin p. 75).



Properties of the set functions φ

We note the following:
I We assume φ’s range does not contain both∞ and −∞.
I We assume φ maps to a finite number at least for one set

A.
If φ is additive, then

1. φ(0) = 0. Proof: HW
2. φ(A1 ∪ · · ·An) = φ(A1) + · · ·+ φ(An) if Ai ∩ Aj = 0, i 6= j .

Proof: obvious, by induction.
3. φ(A1 ∪ A2) + φ(A1 ∩ A2) = φ(A1) + φ(A2) Proof: HW
4. If φ is nonnegative, i.e., φ(A) ≥ 0 for every A, and A1 ⊂ A2,

then
φ(A1) ≤ φ(A2)

Proof: HW
5. If B ⊂ A and |φ(B)| <∞ then φ(A− B) = φ(A)− φ(B).

Proof: HW.
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Properties of the set functions φ

Theorem
Suppose φ is countably additive on a ring R. Suppose A ∈ R,
and An ∈ R such that A1 ⊂ A2 ⊂ · · · and

A = ∪∞n=1An.

Then as n→∞, we have φ(An)→ φ(A).

Proof: Let B1 = A1, Bn = An − An−1, n ≥ 2.
Then observe Bi ’s are pairwise disjoint and An = B1 ∪ · · · ∪ Bn.
Hence φ(An) = φ(B1 ∪ · · · ∪ Bn), so by additivity of φ and Bn’s
being pairwise disjoint, we have
φ(An) =

∑n
i=1 φ(Bi)→

∑∞
i=1 φ(Bi) as n→∞.

Now A = ∪∞n=1An = ∪∞n=1(B1 ∪ · · · ∪ Bn) = ∪∞n=1Bn.
So φ(A) =
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Definition of a measure

Definition
Let R be a σ-ring. A (nonnegative) measure is a countably
additive set function µ : R → [0,∞].

I We note that one can also consider measures that are
negative or complex. Also, measures can be defined on
σ−algebras of sets instead of σ-rings (see for example big
Rudin).

I Next week we will define a measure space and a
measurable space.



Summary of definitions

We have defined the following: (fill in the definitions)

I ring of sets:
I σ-ring of sets:
I set function:
I additive set function:
I countably additive set function:
I measure:
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Lebesgue measure construction

I Lebesgue measure constructed in 1901
I Lebesgue integral defined in 1902
I Both published in 1902 as part of Lebesgue’s dissertation



Lebesgue measure construction: Step 0

The Lebesgue measure is defined in 6 steps, gradually
increasing the complexity of sets considered. Note: each step
is a definition.

0) Empty set: m(∅) = 0.
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Intervals in Rn

An interval in Rn is a subset of Rn determined by two points
a = (a1, . . . ,an) and b = (b1, . . . ,bn) ∈ Rn. The points x belonging to
the interval satisfy

ai ≤ xi ≤ bi , i = 1, . . .n. (2)

I Intervals are also called n-cells in Rudin.

I If n = 1, the interval is

I If n = 2, the interval is

I if n = 3, the interval is

I Rudin also allows ≤ to be replaced by < in the definition of the
interval. Jones does not, and calls the intervals special
rectangles. We follow Rudin here as this makes things
technically simpler in the future.
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Step 1: Lebesgue measure of intervals

1) Intervals: m(I) = Πn
i=1(bi − ai)

I If n = 1, m(I) = so the Lebesgue measure in this
case is

I If n = 2, m(I) = so the Lebesgue measure in this
case is

I if n = 3, m(I) = so the Lebesgue measure in this
case is
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Step 2: Lebesgue measure of special polygons

2) Special polygons: a special polygon A is a finite union of
non-overlapping (having disjoint interiors) closed intervals
(where it is assumed that each interval has nonzero
measure).
m(A) =

∑k
i=1 m(Ii).

It can be shown m(A) is independent of how we
decompose A.



Step 3 and 4: Lebesgue measure of open and
compact sets

3) Open sets, G ⊂ Rn open:
m(G) = sup{m(E) : E ⊂ G,E a special polygon}.

I m(Rn) =∞. We can show m(Rn) ≥ (2a)n for any a > 0.
(see the board)

I m as defined on open sets is in general subadditive (
m(∪∞i=1Gi ) ≤ Σ∞i=1m(Gi )), and countably additive if the sets
are pairwise disjoint (see Jones).

4) Compact sets: K ⊂ Rn compact:
m(K ) = inf{m(G) : K ⊂ G,G open}.

I What if K is a special polygon? To be consistent, we should
check that the definition given in Step 2 agrees with the
definition in Step 4. See Jones.



Step 3 and 4: Lebesgue measure of open and
compact sets

3) Open sets, G ⊂ Rn open:
m(G) = sup{m(E) : E ⊂ G,E a special polygon}.

I m(Rn) =∞. We can show m(Rn) ≥ (2a)n for any a > 0.
(see the board)

I m as defined on open sets is in general subadditive (
m(∪∞i=1Gi ) ≤ Σ∞i=1m(Gi )), and countably additive if the sets
are pairwise disjoint (see Jones).

4) Compact sets: K ⊂ Rn compact:
m(K ) = inf{m(G) : K ⊂ G,G open}.

I What if K is a special polygon? To be consistent, we should
check that the definition given in Step 2 agrees with the
definition in Step 4. See Jones.



Outer & Inner measures: Step 5
Before we go to the next step we define, outer and inner
measures. Let A be an arbitrary subset in Rn. Then

outer measure: m∗(A) = inf{m(G) : A ⊂ G,G open}
inner measure: m∗(A) = sup{m(K ) : K ⊂ A,K compact}

Some of the properties:
I m∗(A) ≤ m∗(A)

I A ⊂ B, then m∗(A) ≤ m∗(B) and m∗(A) ≤ m∗(B).
I If A is open or compact, then m∗(A) = m∗(A) = m(A).

(Compact: in class. Open: HW).

5) Arbitrary set A ⊂ Rn with a FINITE outer measure. We say
A with a finite outer measure is Lebesgue measurable if
and only if

m∗(A) = m∗(A).
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Equivalent characterization of Lebesgue measurable
sets with finite outer measure

Theorem
Let A ⊂ Rn and m∗(A) <∞. Then A is Lebesgue measurable if
and only if for every ε > 0, there exists a compact set K and an
open set G such that

K ⊂ A ⊂ G, and m(G − K ) < ε.

Corollary
If m∗(A) = m∗(A) <∞ and m∗(B) = m∗(B) <∞, then the sets
A ∪ B,A ∩ B and A− B are Lebesgue measurable and have a
finite measure.
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Lebesgue measure of sets with finite outer measure
is countably additive

Theorem
Let Ai ⊂ Rn and m∗(Ai) <∞ and Ai is Lebesgue measurable.
Suppose A is a set such that m∗(A) <∞ and A = ∪∞i=1Ai . Then
A is Lebesgue measurable and

m(A) ≤ Σ∞i=1m(Ai).

If Ai ’s are pairwise disjoint then

m(A) = Σ∞i=1m(Ai).



When is an arbitrary subset of Rn Lebesgue
measurable?

Definition

6) An arbitrary set A ⊂ Rn is Lebesgue measurable if and
only if A ∩M is Lebesgue measurable for every
measurable M ⊂ Rn where m∗(M) <∞. The Lebesgue
measure of A is then

m(A) = sup{m(A ∩M) : M ⊂ Rn,m∗(M) = m∗(M) <∞}.

I Note the following: Since A ∩M ⊂ M and m∗(M) <∞, we have
m∗(A ∩M) <∞, so when we check if A ∩M is Lebesgue
measurable, we check it in the sense of the definition given in
Step 5.



Consistency check

Theorem
Let A ⊂ Rn with m∗(A) <∞. Then A is Lebesgue measurable
according to definition in Step 5 if and only if it is Lebesgue
measurable according to the definition in Step 6. Moreover,
m(A) in Step 5 produces the same number as m(A) in Step 6.



Proof of the Consistency check Thm

Proof.
Suppose m∗(A) <∞, and A is measurable according to the definition
in Step 5. Then if M is another set that is measurable with
m∗(M) <∞ we have A ∩M is measurable by the Corollary.
Next suppose A is measurable according to the definition in Step 6.
Consider Bk (0), an open ball of radius k centered at the origin.
m(Bk ) <∞. So since A is measurable according to the definition in
Step 6, A ∩ Bk is measurable and m(A ∩ Bk ) <∞ since A ∩ Bk ⊂ Bk .
Now we can write A as A = ∪∞k=1(A∩Bk ), so by the countably additive
property of the measure defined in Step 5, we have A is measurable.
Now we show that the two definitions produce same value for m(A).
Let m̄(A) denote the measure defined in Step 6:

m̄(A) = sup{m(A ∩M) : M ⊂ Rn,m∗(M) = m∗(M) <∞.}

Since A ∩M ⊂ A we have m(A ∩M) ≤ m(A) so by definition of
sup, m̄(A) ≤ m(A). But since m(A) <∞, we can let M = A, so again
by definition of sup, m̄(A) ≥ m(A ∩ A) = m(A), so m̄(A) = m(A), as
needed.
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Properties of Lebesgue measure
Let L denote the set of all Lebesgue measurable subsets of Rn.

1. If A ∈ L, then Ac ∈ L.

2. Countable unions and countable intersections of measurable
sets are measurable.

3. If A,B ∈ L, then A− B ∈ L.

4. If Ak ∈ L, then m(∪∞k=1Ak ) ≤ Σ∞k=1m(Ak ) and if Ak are pairwise
disjoint, then

m(∪∞k=1Ak ) = Σ∞k=1m(Ak ).

5. If A1 ⊂ A2 ⊂ . . . , and Ak are measurable, then
m(∪∞k=1Ak ) = limk→∞m(Ak ) (we showed this already for
countably additive set functions (see Thm 11.3 in Rudin or these
notes), and m is countably additive by the previous property)

6. If A1 ⊃ A2 ⊃ . . . , Ak are measurable, and m(A1) <∞, then
m(∩∞k=1Ak ) = limk→∞m(Ak ).

7. All open sets and all closed sets are measurable.

8. If m∗(A) = 0, then A is measurable and m(A) = 0.
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7. All open sets and all closed sets are measurable.

8. If m∗(A) = 0, then A is measurable and m(A) = 0.



Proof of: if m∗(A) = 0, then A is measurable and
m(A) = 0.

By properties of inner and outer measure we have

0 ≤ m∗(A) ≤ m∗(A).

But since m∗(A) = 0, we must have m∗(A) = 0. So

m∗(A) = m∗(A) = 0,

so A is measurable (using definition from Step 5 since the outer
measure is finite.)



More properties of the Lebesgue measure

9) If A is measurable, then m∗(A) = m∗(A) = m(A).
10) A ⊂ Rn is Lebesgue measurable if and only if for every

ε > 0, there exists a closed set K and an open set G such
that

K ⊂ A ⊂ G, and m(G − K ) < ε.



another equivalent definition of Lebesgue measurable
due to Carathéodory

Theorem
A is measurable if and only if for every set E ⊂ Rn

m∗(E) = m∗(E ∩ A) + m∗(E ∩ Ac).
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