Problem 2.3: If a_n forms a non-increasing sequence and d is a fixed natural number such that d > 1, show that $\sum_{n=1}^{\infty} a_n$ converges if and only if $\sum_{k=0}^{\infty} d^k a_{d^k}$ converges.

Suppose
$$\sum_{n=1}^{n} a_n$$
 is convergent:

The

$$a_{1} + \frac{1}{d} \sum_{n=1}^{N} d^{n} a_{d^{n}} = a_{1} + \sum_{n=1}^{N} d^{n-1} a_{d^{n}}$$

$$= a_{1} + a_{d} + \frac{da_{d^{2}}}{d^{2}} + \dots + \frac{d^{N-1}a_{d^{N}}}{d^{N}}$$

$$= a_{1} + a_{d} + \frac{da_{d^{2}}}{d^{2}} + \dots + \frac{d^{N-1}a_{d^{N}}}{d^{N}}$$

$$= a_{1} + a_{d} + \frac{da_{d^{2}}}{d^{2}} + \dots + \frac{d^{N-1}a_{d^{N}}}{d^{N}}$$

$$= a_{1} + a_{d} + \frac{da_{d^{2}}}{d^{2}} + \dots + \frac{d^{N-1}a_{d^{N}}}{d^{N}}$$

$$= a_{1} + a_{d} + \frac{da_{d^{2}}}{d^{2}} + \dots + \frac{d^{N-1}a_{d^{N}}}{d^{N}} = \sum_{n=d^{2}-d+1}^{d^{2}} a_{n}$$

$$= a_{1} + a_{d} + \frac{da_{d^{2}}}{d^{2}-d+1} + \dots + a_{d^{2}} = \sum_{n=d^{2}-d+1}^{d^{2}} a_{n}$$

$$= a_{1} + a_{2} + \sum_{n=d^{2}-d+1}^{d^{2}} a_{n} + \sum_{n=d^{N}-d^{N-1}+1}^{d^{N}} + \dots + \sum_{n=d^{N}-d^{N-1}+1}^{d^{N}} a_{n}$$

$$= a_{1} + a_{2} + \sum_{n=d^{2}-d+1}^{d^{2}} a_{n} + \sum_{n=d^{2}-d}^{d^{3}} a_{n} + \dots + \sum_{n=d^{N}-d^{N-1}+1}^{d^{N}} a_{n}$$

$$= a_{1} + a_{2} + \sum_{n=d^{2}-d}^{d^{2}} a_{n} + \sum_{n=d^{2}-d}^{d^{2}} a_{n} + \sum_{n=d^{2}-d^{2}-1}^{d^{N}} a_{n} + \sum_{n=d^{N}-d^{N-1}+1}^{d^{N}} a_{n}$$

$$= \sum_{n=1}^{d^{N}} a_{n} + \sum_{n=d^{2}-d}^{d^{2}} a_{n} + \sum_{n=d^{2}-d^{2}-1}^{d^{2}} a_{n} + \sum_{n=d^{N}-d^{N-1}+1}^{d^{N}} a_{n}$$

$$= \sum_{n=1}^{d^{N}} a_{n} + \sum_{n=d^{2}-d}^{d^{2}} a_{n} + \sum_{n=d^{2}-d^{2}-1}^{d^{2}} a_{n} + \sum_{n=d^{N}-d^{N-1}+1}^{d^{N}} a_{n}$$

$$= \sum_{n=1}^{d^{N}} a_{n} + \sum_{n=d^{2}-d}^{d^{2}} a_{n} + \sum_{n=d^{2}-d^{2}-1}^{d^{2}} a_{n} + \sum_{n=d^{N}-d^{N-1}+1}^{d^{N}} a_{n}$$

$$= \sum_{n=1}^{d^{N}} a_{n} + \sum_{n=d^{2}-d}^{d^{N}} a_{n} + \sum_{n=d^{2}-d^{2}-1}^{d^{N}} a_{n} + \sum_{n=d^{N}-d^{N-1}+1}^{d^{N}} a_{n}$$

$$= \sum_{n=1}^{d^{N}} a_{n} + \sum_{n=d^{2}-d}^{d^{N}} a_{n} + \sum_{n=d^{2}-d}^{d^{N}} a_{n} + \sum_{n=d^{N}-d^{N}-1}^{d^{N}} a_{n}$$

$$= \sum_{n=1}^{d^{N}} a_{n} + \sum_{n=d^{N}-d^{N}} a_{n} + \sum_{n=d^{N}-d^{N}-1}^{d^{N}} a_{n} + \sum_{n=d^{N}-d^{N}-1}^{d^{N}} a_{n}$$

$$= \sum_{n=1}^{d^{N}} a_{n} + \sum_{n=d^{N}-d^{N}} a_{n} + \sum_{n=d^{N}-d^{N}-1}^{d^{N}} a_{n} + \sum_{n=d^{N}-1}^{d^{N}} a_{n} + \sum$$

Therefore $a_1 + \frac{1}{d} \sum_{n=1}^{\infty} d^n a_{d^k}$ is convergent since its partial sums are bounded by $\sum_{n=1}^{\infty} a_n$ which is convergent by hypothesis. But this expression is simply $\sum_{k=1}^{\infty} d^k a_{d^k}$ with an added constant and multiplied by $\frac{1}{d}$ does $\sum_{k=0}^{\infty} d^k a_{d^k}$.

w suppose
$$\sum_{k=0}^{\infty} d^k a_{d^k}$$
 is convergent. Because d is a constant the series $d \sum_{k=0}^{\infty} d^k a_{d^k}$ is also convergent:

$$\sum_{n=1}^{N} a_n \leq \sum_{n=1}^{d^n+d^{N-1}+\ldots+d} a_n$$

$$= \int_{n=1}^{d} a_n + \int_{n=d+1}^{d^2+d} a_n + \int_{n=d^2+d+1}^{d^3+d^2+d+1} a_n + \ldots + \int_{n=d^{N-1}+d^{N-2}+\ldots+d+1}^{d^N+d^{N-1}+\ldots+d} a_n$$

$$\leq da_1 + d^2a_{d+1} + d^3a_{d^2+d+1} + \ldots + d^Na_{d^{N-1}+d^{N-2}+\ldots+d+1}$$

$$\leq da_1 + d^2a_d + d^3a_{d^2} + \ldots + d^Na_{d^{N-1}} + d^{N+1}a_{d^N}$$
Adding in additional positive terms

$$= \sum_{k=0}^{N} d^{k+1}a_{d^k} \leq d \sum_{k=0}^{\infty} d^k a_{d^k}$$

+ 9

 $1^N - d$

No

From this we see that the partial sums $\sum_{n=1}^{N} a_n$ are bounded by $d \sum_{k=0}^{\infty} d^k a_{d^k}$ for any N so whenever $\sum_{k=0}^{\infty} d^k a_{d^k}$ is convergent, so too is $\sum_{n=1}^{\infty} a_n$