Problem 2.3: If a_{n} forms a non-increasing sequence and d is a fixed natural number such that $d>1$, show that $\sum_{n=1}^{\infty} a_{n}$ converges if and only if $\sum_{k=0}^{\infty} d^{k} a_{d^{k}}$ converges.

Suppose $\sum_{n=1}^{\infty} a_{n}$ is convergent:

$$
\begin{aligned}
& a_{1}+\frac{1}{d} \sum_{n=1}^{N} d^{n} a_{d^{n}}=a_{1}+\sum_{n=1}^{N} d^{n-1} a_{d^{n}} \\
& \square=a_{1}+a_{d}+\frac{d a_{d^{2}}+\ldots+d^{N-1} a_{d}^{N}}{\text { uses } a_{n} \text { are non-increasing }} \quad \text { stat at shoe } \\
& \quad \text { (e.j.ifd }=2)
\end{aligned}
$$

$$
\begin{aligned}
& \square=a_{1}+a_{d}+d a_{d^{2}}+\ldots+d^{N-1} a_{d}^{N} \\
& \leq a^{N}+a_{n}+a_{d^{2}-d+1}+\ldots+a_{d 2} \\
& \quad \text { statant non-increasing }
\end{aligned}=\sum_{n=d^{2}-d+1}^{d^{2}} a_{n}
$$

Now, there are also exact All
d terms (and not $d+1$)

$$
\begin{aligned}
& \leq a_{1}+a_{2}+\sum_{n=d^{2}-d+}^{d^{2}} a_{n}+\sum_{n=d^{3}-d^{2}+1}^{d^{3}} a_{n}+\ldots+\sum_{n=d^{N}-d^{N-1}+1}^{d^{N}} a_{n}^{n=d^{N}-d^{N-1}+1} \quad(\notin) \\
& \leq a_{1}+a_{2}+d^{d^{2}-d-1}
\end{aligned}
$$

$n=d^{n}-d^{2} \quad \sum_{n=d^{N}-d^{N-1}} a_{n}$
Adding in additional positive terms (it anything

$$
=\sum_{a, i} \leq \sum_{n}^{\infty} \text { Ingenconlcan } \sin (*) \leq \sum_{n=1}^{n} a_{n}=s_{d^{n}}<\infty \text {. }
$$

Therefore $a_{1}+\frac{1}{d} \sum_{n=1}^{\infty} d^{n} a_{d k}$ is convergent since its partial sums are bounded by $\sum_{n=1}^{\infty} a_{n}$ which is conferwhich is a constant so $\sum_{k=0}^{\infty} d^{k} a_{d^{k}}$ must also converge. Consequently when constant and mich is confer-
does $\sum_{k=0}^{\infty} d^{k} a_{d^{k}}$.

$$
x^{5}-d^{1}
$$

Now suppose $\sum_{k=0}^{\infty} d^{k} a_{d^{k}}$ is convergent. Because d is a constant the series $d \sum_{k=0}^{\infty} d^{k} a_{d^{k}}$ is also convergent:

$$
\begin{aligned}
\sum_{n=1}^{N} a_{n} & \leq \sum_{n=1}^{d^{N}+d^{N-1}+\ldots+d} a_{n}\left(\text { Observe }, N<d^{N}+d^{N-1}+\ldots+d\right) \\
& =\sum_{n=1}^{d} a_{n}+\sum_{n=d+1}^{d^{2}+d} a_{n}+\sum_{n=d^{2}+d+1}^{d^{3}+d^{2}+d+1} a_{n}+\ldots+\sum_{n=d^{N-1}+d^{N-2}+\ldots+d+1}^{d^{N}+d^{N-1}+\ldots+d} \\
& a_{n}+d^{2} a_{d+1}+d^{3} a_{d^{2}+d+1}+\ldots+d^{N} a_{d^{N-1}+d^{N-2}+\ldots+d+1} \\
& \leq d a_{1}+d^{2} a_{d}+d^{3} a_{d^{2}}+\ldots+d^{N} a_{d^{N-1}}+d^{N+1} a_{d^{N}}
\end{aligned}
$$

Adding in additional positive terms

$$
=\sum_{k=0}^{N} d^{k+1} a_{d^{k}} \leq d \sum_{k=0}^{\infty} d^{k} a_{d^{k}}
$$

From this we see that the partial sums $\sum_{n=1}^{N} a_{n}$ are bounded by $d \sum_{k=0}^{\infty} d^{k} a_{d^{k}}$ for any N so whenever
$\sum_{k=0}^{\infty} d^{k} a_{d^{k}}$ is convergent, so too is $\sum_{n=1}^{\infty} a_{n}$

