Math 3430

1 What does it mean to be a solution of an ODE?

In class, we introduced the following function spaces. Let J be an interval, then

$$C(J) = \{ f : J \to \mathbb{R} : f \text{ is continuous on } J \}, \tag{1}$$

$$C^{k}(J) = \{f: J \to \mathbb{R}: f, f', \dots, f^{(k)} \text{ are continuous on } J\},$$
(2)

$$C^{\infty}(J) = \{ f : J \to \mathbb{R} : f^{(k)} \text{ is continuous on } J \text{ for any } k \ge 0 \}.$$
(3)

Then we gave a definition of a solution.

Definition 1. Given a k'th order ODE, a function y is a (classical) solution to the ODE on an interval J if $y \in C^k(J)$ and y satisfies the ODE identically on J.

Remark 1.1. So when we are asked to solve an ODE, we should give a function y and interval J. We will follow this when we are solving an (IVP).

Remark 1.2. The interval J is called an interval of existence for the solution y. The goal is to give the maximal (largest possible) interval of existence.

Remark 1.3. The interval J is going to be just one interval; it cannot be a union of intervals. This means that the interval of existence is not going to be always the same as the domain of the function y, when y is thought of only as a function in a Calculus sense. For us y is a function that solves an ODE: so it is a function in a Calculus sense, but it also has an additional property of solving an ODE. That additional property forces restrictions on where y should be defined. As a result, the interval of existence can be strictly smaller than what the domain of y would be if we were just thinking about it as a function.

Remark 1.4. We need y to be C^k on J, but we also need the ODE to be well-defined on J. Therefore, the search for the interval J starts with looking at the ODE and seeing if there are any points (say, x) for which the ODE might not be defined.

Intervals of existence for the HW problems

Section 1.4 Exercise 2a) $J = (-\infty, \infty)$ Section 1.4 Exercise 2b) $J = (0, \pi)$ Section 1.4 Exercise 2c) $J = (-\infty, 0)$. Here, we can give the answer for y as $y = \frac{\ln |t| - 1}{t}$ as the book or $y = \frac{\ln(-t) - 1}{t}$