Math 3430, Spring 2019, Systems of equations

We consider systems
¥ = Az, (1)

where A is a 2 x 2 matrix with constant real coefficients, and = : I — R2?. We look for a
solution of the form

x(t) = ve,

where v is a constant vector and A is a scalar. Plugging this into (1) gives
2eM =eMAy & Av = ). (2)

We are interested in finding a general solution, so we do not want to consider vectors v = 0.
Since by definition the eigenvectors are nonzero, finding vectors v and scalars \ satisfying

Av = Ao, (3)

is equivalent to solving an eigenvalue problem for A. The idea is to find n = 2 linearly
independent solutions (see Theorem 3 in Section 7.2 and compare to Theorem 2 in Section
2.2). Here is the procedure we follow.

Step 0: Make sure the system is in the matrix form:

= Azx.

Step 1: Find the eigenvalues for the matrix A.

Step 2: Since the characteristic polynomial equation for a 2 x 2 matrices is quadratic, there
are three cases to consider (compare to 2nd order ODE in Chapter 2). We discuss them
according to the order of difficulty.

Case 1: Two real distinct eigenvalues: A, \s € R. Recalling a theorem from Linear
Algebra we know the corresponding eigenvectors will be linearly independent. We find an
eigenvector v; corresponding to A\; and vy corresponding to As. The general solution is then
given by

A

z(t) = creMtvy + ey,

Case 2: Complex Eigenvalues: a + i (a,8 € R,8 # 0). In this case, when we
find the eigenvector v; corresponding to the eigenvalue A\; = a + i and the eigenvector vy
corresponding to Ay = o — 13,

My, and e,

will be both complex. But since the matrix A is real-valued, it is reasonable to look for
real-valued solutions. We follow the same idea as in Chapter 2.

If w(t) is a complex valued solution, we can write it as v(t) = uy(t) + ius(t), where uy, us
are real-valued. Next, because (1) is linear, we can show that both w; and wus are solutions
(exercise!). So we take one eigenvalue o + i and find a corresponding eigenvector v. Next,
veM is a solution, so we then extract the real and imaginary parts. They can be shown to be

up(t) = e*(By cos Bt — Bysin Bt), us(t) = e (By cos Bt + By sin t),

where

By = Re(v), Bz =Zm(v),



where v is an eigenvector associated to the eigenvalue o + i. It is another exercise to show
uy and uy are linearly independent. Hence the general solution is given by

x(t) = cruy(t) + coua(t).

Case 3: Repeated real eigenvalue. This is in some sense the most complicated case.
Recall from Linear Algebra

e m, algebraic multiplicity is the number of times A appears as a root of det(A—AI) = 0.

e m, geometric multiplicity is the number of linearly independent eigenvectors corre-
sponding to A .

Since we have n = 2, the repeated eigenvalue means, we have m, = 2. If it turns out that
mg = 2 also, then we can just take the linear combination as the solution

A A

x(t) = cre™vy + cpeMus.

If my = 1, then we have what is called a defective eigenvalue. In this case the general solution
can be shown to be given by
z(t) = creMv + cous,

where
us(t) = eM(tv + w),

with v an eigenvector associated to the eigenvalue A, and w the generalized eigenvector
solving (A — A )w = v.



