
Math 3430, Spring 2019, Systems of equations

We consider systems
x′ = Ax, (1)

where A is a 2 × 2 matrix with constant real coefficients, and x : I → R2. We look for a
solution of the form

x(t) = veλt,

where v is a constant vector and λ is a scalar. Plugging this into (1) gives

λveλt = eλtAv ⇔ Av = λv. (2)

We are interested in finding a general solution, so we do not want to consider vectors v = 0.
Since by definition the eigenvectors are nonzero, finding vectors v and scalars λ satisfying

Av = λv, (3)

is equivalent to solving an eigenvalue problem for A. The idea is to find n = 2 linearly
independent solutions (see Theorem 3 in Section 7.2 and compare to Theorem 2 in Section
2.2). Here is the procedure we follow.
Step 0: Make sure the system is in the matrix form:

x′ = Ax.

Step 1: Find the eigenvalues for the matrix A.
Step 2: Since the characteristic polynomial equation for a 2×2 matrices is quadratic, there
are three cases to consider (compare to 2nd order ODE in Chapter 2). We discuss them
according to the order of difficulty.
Case 1: Two real distinct eigenvalues: λ1, λ2 ∈ R. Recalling a theorem from Linear
Algebra we know the corresponding eigenvectors will be linearly independent. We find an
eigenvector v1 corresponding to λ1 and v2 corresponding to λ2. The general solution is then
given by

x(t) = c1e
λ1tv1 + c2e

λ2tv2.

Case 2: Complex Eigenvalues: α ± iβ (α, β ∈ R, β 6= 0). In this case, when we
find the eigenvector v1 corresponding to the eigenvalue λ1 = α + iβ and the eigenvector v2
corresponding to λ2 = α− iβ,

eλ1tv1 and eλ2tv2

will be both complex. But since the matrix A is real-valued, it is reasonable to look for
real-valued solutions. We follow the same idea as in Chapter 2.

If w(t) is a complex valued solution, we can write it as v(t) = u1(t) + iu2(t), where u1, u2
are real-valued. Next, because (1) is linear, we can show that both u1 and u2 are solutions
(exercise!). So we take one eigenvalue α + iβ and find a corresponding eigenvector v. Next,
veλt is a solution, so we then extract the real and imaginary parts. They can be shown to be

u1(t) = eαt(B1 cos βt−B2 sin βt), u2(t) = eαt(B2 cos βt+B1 sin βt),

where
B1 = Re(v), B2 = Im(v),
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where v is an eigenvector associated to the eigenvalue α+ iβ. It is another exercise to show
u1 and u2 are linearly independent. Hence the general solution is given by

x(t) = c1u1(t) + c2u2(t).

Case 3: Repeated real eigenvalue. This is in some sense the most complicated case.
Recall from Linear Algebra

• ma algebraic multiplicity is the number of times λ appears as a root of det(A−λI) = 0.

• mg geometric multiplicity is the number of linearly independent eigenvectors corre-
sponding to λ .

Since we have n = 2, the repeated eigenvalue means, we have ma = 2. If it turns out that
mg = 2 also, then we can just take the linear combination as the solution

x(t) = c1e
λtv1 + c2e

λtv2.

If mg = 1, then we have what is called a defective eigenvalue. In this case the general solution
can be shown to be given by

x(t) = c1e
λtv + c2u2,

where
u2(t) = eλt(tv + w),

with v an eigenvector associated to the eigenvalue λ, and w the generalized eigenvector
solving (A− λI)w = v.
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