University of Colorado Boulder Math 3430-002, Exam 2

Fall 2019

NAME:

Question	Points	Score
1	20	
2	20	
3	20	
4	20	
5	20	
Total:	100	

- No calculators or cell phones or other electronic devices allowed at any time.
- Read instructions carefully. Show all your reasoning and work for full credit unless indicated otherwise.

1. (20 points) Short answer questions.
(a) Fill in the blanks:

Consider the ODE

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+c y=0, a, b, c \in \mathbb{R}, a \neq 0 \tag{0.1}
\end{equation*}
$$

Suppose y_{1} and y_{2} are two solutions of (0.1) that are linearly in che pe went on \mathbb{R}. Then a general solution y of this equation can be expressed as

$$
y(x)=c_{1} Y_{1}(X)+c_{2} y_{2}(X)
$$

(b) Write the definition of the Wronskian of two functions f and g :

$$
W(f, g)=\left|\begin{array}{cc}
f & g \\
f^{\prime} & \prime \\
& g
\end{array}\right|
$$

(c) Fill in the blanks (TWO ways to check if two functions are linearly independent): Two functions f and g are linearly independent on an interval I if their Wronskian $W(f, g) \neq 0$ for some $x \in \frac{1}{x}$, or if

$$
f(x) \neq \operatorname{cog}(x) \text { for some con thant } c \text {. }
$$

(d) Write the general solution of the following ODE

$$
\begin{array}{ll}
r^{2}+2 r=0 & \quad r=0 \\
r(r+2)=0 & \quad=-2
\end{array}
$$

(e) Write the general solution of the following ODE

$$
\begin{aligned}
& r^{2}-2 r+5=0 \quad y(x)=c_{1} e^{x} \cos 2 x \\
& r=\frac{2 \pm \sqrt{4-4 \cdot 5}}{2}=\frac{2 \pm \sqrt{-16 i}}{2}=1 \pm 2 i \quad+c_{2} e^{x} \sin 2 x
\end{aligned}
$$

Page 1 of 5
2. (20 points) Consider the ODE

$$
y^{\prime \prime}-2 y^{\prime}+y=f(x)
$$

For each of $f(x)$ below write the most educated guess for the trial y_{p} (DO NOT solve for the coefficients):

$$
\begin{aligned}
& r^{2}-2 r+1=0 \\
& (r-1)^{2}=0 \quad r=1 \\
& y(x)=c_{1} e^{x}+c_{2} x e^{x}
\end{aligned}
$$

(a) $\quad f(x)=4$

$$
y_{p}=A
$$

(b) $f(x)=\sin (x)$ $y_{\mathrm{T}}=A \sin x+B \cos x$
(9) $(x)=x^{a}-2 x \quad y_{p}=A x^{2}+B x+C$

3. (20 points) Check directly from the definition if L defined below is a linear or a nonlinear operator. You can use that derivatives of all orders are linear operators, and that multiplication by a function is a linear operator.

$$
L=x^{2} \frac{d^{2}}{d x^{2}}+(\cdot)^{2}+1
$$

Note, this means $L y=x^{2} y^{\prime \prime}+y^{2}+y$.

$$
\begin{aligned}
& \text { Claim: L is nonlinear. } \\
& \text { We show } L(c y) \neq c L y \text { for any } c \neq 1 \\
& L(c y)=x^{2} c y^{\prime \prime}+c^{2} y^{2}+c y \\
& c L y=c\left(x^{2} y^{\prime \prime}+y^{2}+y\right) \\
& c^{2} y^{2} \neq c y^{2} \text { unless } c=1 \text { or } c=0 \text {. } \\
& \Rightarrow L \text { is non Anear as weeded. }
\end{aligned}
$$

4. (20 points) Use the Laplace Transform Table to compute
(a) $\mathcal{L}\left[2+t^{2}\right]=\frac{2}{S}+\frac{2}{S^{3}}$
(b) $\mathcal{L}[\delta(t-1)]=Q-S$

5. (20 points) Use the Laplace Transform to solve the following IVP.

$$
\begin{aligned}
& y^{\prime}+y=u(t-2), \quad y(0)=1 \\
& s y-y(0)+Y=e^{-2 s} / s \\
& (s+1) y=1+e^{-2 s} / s \\
& y=\frac{1}{s+1}+\frac{e^{-2 s}}{s(s+1)} \\
& \frac{1}{s(s+1)}=\frac{A}{s}+\frac{B}{s+1} \\
& 1=A(s+1)+B S \\
& s=-1 \quad s=0 \\
& B=-1 \quad A=1 \\
& y=\frac{1}{s+1}+\frac{e^{-2 s}}{s}-\frac{e^{-2 s}}{s+1} \\
& y(t)=e^{t}+n(t-2) \\
& +n(t-2) e^{-(t-2)} \\
& w(t-n) f(t-N) \\
& \rightarrow e^{-\omega s} F(s) \\
& a=2 \quad F(s) \\
& =\frac{1}{s+1} \\
& f(t)=e^{-t}
\end{aligned}
$$

