University of Colorado Boulder Math 3430, Exam 1

Fall 2019

NAME:
Solutions

Question	Points	Score
1	20	
2	20	
3	20	
4	20	
5	20	
Total:	100	

- No calculators or any electronic devices are allowed at any time.
- Read instructions carefully. Show all your reasoning and work for full credit unless indicated otherwise.

1. (20 points) Short answer questions.
(a) (10pts) Find all equilibrium solutions and determine the stability of each equilibrum.

$$
f(y)=-y \quad f(y)^{y^{\prime}=-y .}=0 \Leftrightarrow y_{0}=0
$$

$$
\begin{aligned}
& (0, \infty) \stackrel{f(y)}{-} \Rightarrow y^{\prime}<0 \\
& (-\infty, 0)+\Rightarrow y^{\prime}>0 \\
& y_{0}=0 \text { is a stable sink. }
\end{aligned}
$$

(b) (10pts) Which type of substitution would allow you to solve the following ODE by transforming it from nonlinear to linear?

$$
y^{4} y^{\prime}+y^{5} \ln x=e^{x}
$$

Make the substitution, and fill in the blanks below. DO NOT SOLVE the ODE. $y^{\prime}+\ln x y=e^{x} y-4 \quad \alpha=-4$ $v=y^{1-(-4)}=y^{5}$
(You can choose one of these to compute; use your substitution.)

$$
v^{\prime}=5 y^{4} y^{\prime} \quad \text { or } y^{\prime}=\frac{v^{\frac{1}{5}}}{\frac{1}{5} v^{-4 / 5} v^{\prime}}
$$

2. (20 points) (a) (15pts) Find all solutions, ie., the general solution, to the following ODE. If there is a possibility of dividing by zero, address it.

$$
y^{\prime}=y^{2}
$$

$$
\text { case 2: } y \equiv 0
$$

Solves the obb.

$$
\frac{d y}{y^{2}}=d x
$$

(b) (5pts) Use part a) to solve the following initial value problem. In your final answer, state the interval of existence for the solution y.

$$
y^{\prime}=y^{2}, \quad y(0)=1
$$

Then $1=\frac{1}{c-0}$

$$
C=1
$$

$$
\text { So } y=\frac{1}{1-x}
$$

3. (20 points) Find the general solution of the following ODE. If there is a possibility of dividing by zero, address it.

$$
x y^{\prime}+3 y=4 x \cos \left(x^{4}\right)
$$

Standard form: $y^{\prime}+\frac{3}{x} y=4 \cos x^{4} \quad x \neq 0$

$$
I(x)=e^{\int \frac{3}{x} d x}=e^{3 \ln |x|}=e^{\ln |x|^{3}}=x^{3}
$$

$$
y^{\prime} x^{3}+3 x^{2} y=4 x^{3} \cos x^{4}
$$

choose

$$
\frac{d}{d x}\left(y x^{3}\right)=4 x^{3} \cos \left(x^{4}\right)
$$

$$
J=(0, \infty)
$$

$$
y x^{3}=\int 4 x^{3} \cos \left(x^{4}\right) d x
$$

$$
=\sin \left(x^{4}\right)+C
$$

$$
\begin{gathered}
=\sin (x)=\frac{\sin \left(x^{4}\right)}{x^{3}}+\frac{c}{x^{3}} \quad J=(0, \infty) \\
y=3 c
\end{gathered}
$$

$$
\begin{aligned}
& \text { Check: } \begin{aligned}
y^{\prime} & =\frac{x^{3} \cos \left(x^{4}\right) 4 x^{3}-\sin \left(x^{4}\right) 3 x^{2}}{x^{6}}-\frac{3 c}{x^{4}} \\
& =\frac{4 x^{4} \cos \left(x^{4}\right)-3 \sin \left(x^{4}\right)}{x^{4}}-\frac{3 c}{x^{4}} \\
\frac{3}{x} y & =\frac{3 \sin \left(x^{4}\right)}{x^{4}}+\frac{3 c}{x^{4}} \Rightarrow y^{\prime}+\frac{3}{x} y=4 x \cos \left(x^{4}\right)
\end{aligned}
\end{aligned}
$$

check:
4. (20 points) Find the general solution of the following ODE.

$$
\left(\sin ^{2} x-3 y^{2}\right) y^{\prime}=-x-2 y \sin x \cos x
$$

check it exact:

$$
\begin{aligned}
& M(x, y)=x+2 y \sin x \cos x \\
& N(x, y)=\sin ^{2} x-3 y^{2}
\end{aligned}
$$

Need $\partial_{y} M=\partial_{x} N$

$$
\begin{aligned}
& \text { Heed } \partial_{y} M=\partial x N \\
& \partial_{y} M=2 \sin x \cos x=\partial \times N \Rightarrow \text { Exact. }
\end{aligned}
$$

$$
\begin{aligned}
\partial y M= & 2 \sin x \cos x \\
\text { Find } P(x, y) & =\int\left(\sin ^{2} x-3 y^{2}\right) d y \\
& =\left(\sin ^{2} x\right) y-y^{3}+h r x
\end{aligned}
$$

$$
\begin{align*}
\partial x \Phi=M \Rightarrow & 2 \sin x \cos x y+h^{\prime}(x) \\
& =x+2 y \sin x \cos x \\
h^{\prime}(x) & =x \\
h(x) & =\frac{x^{2}}{2}+c_{1} \\
\Rightarrow \quad & \sin ^{2} x y-y^{3}+\frac{x^{2}}{2}=C \quad(x)
\end{align*}
$$

Check: $\frac{d}{d x}(x)$ gives

$$
\begin{aligned}
& 2 \sin x \cos x y+\sin ^{2} x y^{\prime}-3 y^{2} y^{\prime}+x=0 \\
& \int \frac{\partial \Phi}{\partial x} \frac{\partial \Phi}{\partial y} d y=\frac{\partial \Phi}{\partial x}
\end{aligned}
$$

5. (20 points) Recall the following theorem:

Theorem. Consider

$$
\frac{d y}{d x}=f(x, y), \quad y\left(x_{0}\right)=y_{0}
$$

- (Existence). If $f(x, y)$ is continuous in an open rectangle $R=(a, b) \times(c, d)$ in the $x y$ plane that contains the point $\left(x_{0}, y_{0}\right)$, then there exists a solution $y(x)$ to the (IVP) (\star) that is defined in an open interval $I=(\alpha, \beta)$ containing x_{0}.
- (Uniqueness) If the partial derivative $\frac{\partial f}{\partial y}$ is continuous in R, then the solution $y(x)$ of (\star) is unique.

Consider an ODE

$$
\begin{equation*}
\frac{d y}{d x}=e^{x^{2}}(y-1)^{\frac{2}{3}} \tag{0.1}
\end{equation*}
$$

(a) (18 pts) Given the $\operatorname{ODE}(0.1)$ with initial condition

$$
y(1)=0
$$

can we apply the theorem to say there exists a unique solution to this IVP? Justify, and draw your rectangle R.

$$
\text { Existence: } f(x, y)=e^{x^{2}}(y-1)^{2 / 3} \text { is cont. in } \mathbb{R}^{2} \text { so in any }
$$ open rectangle R containing $(1,0)$. is cont everywhere except $y=1$, but can find a rectayle Rs. $\partial_{y} t$ is cont \& $(x, y,) \in R . \Rightarrow$ the sols is union re.

(b) (2 pts correct, 1 pt blank, -1 pts incorrect). True/False (no work is needed; if there is work, but the reasoning is incorrect, the answer will count as incorrect). Given the ODE (0.1) with initial condition

$$
\begin{aligned}
& \text { est, the answer will count as incorrect). Given } \\
& \partial_{y} f \text { is not cont at } \\
& y(1)=1, \quad(1,1) \text { so there can be }
\end{aligned}
$$

the theorem tells us the solution to this IVP is not unique. no rectangle containing

$$
(1,1) \text { st. } \partial_{y}+\text { is cont. }
$$

nesses \Rightarrow The Tum does nut

