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Math 3430 Exam 1 Fall 2019

1. (20 points) Short answer questions.

(a) (10pts) Find all equilibrium solutions and determine the stability of each equilib-

rium.

y0 = �y.

(b) (10pts) Which type of substitution would allow you to solve the following ODE by

transforming it from nonlinear to linear?

y4y0 + y5 ln x = ex

Make the substitution, and only fill in the blanks below. DO NOT SOLVE the

ODE.

v=

(You can choose one of these to compute; use your substitution.)

v’= or y’=
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2. (20 points) (a) (15pts) Find all solutions, i.e. the general solution, to the following

ODE. If there is a possibility of dividing by zero, address it.

y0 = y2.

(b) (5pts) Use part a) to solve the following initial value problem. In your final answer,

state the interval of existence for the solution y.

y0 = y2, y(0) = 1.
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3. (20 points) Find the general solution of the following ODE. If there is a possibility of

dividing by zero, address it.

xy0 + 3y = 4x cos(x4
)
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4. (20 points) Find the general solution of the following ODE.

(sin
2 x� 3y2)y0 = �x� 2y sin x cos x
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5. (20 points) Recall the following theorem:

Theorem. Consider
dy

dx
= f(x, y), y(x0) = y0. (?)

• (Existence). If f(x, y) is continuous in an open rectangle R = (a, b)⇥(c, d) in the xy-

plane that contains the point (x0, y0), then there exists a solution y(x) to the (IVP)

(?) that is defined in an open interval I = (↵, �) containing x0.

• (Uniqueness) If the partial derivative @f
@y is continuous in R, then the solution y(x)

of (?) is unique.

Consider an ODE

dy

dx
= ex

2
(y � 1)

2
3 (0.1)

(a) (18 pts) Given the ODE (0.1) with initial condition

y(1) = 0,

can we apply the theorem to say there exists a unique solution to this IVP? Justify,

and draw your rectangle R.

(b) (2 pts correct, 1 pt blank, -1 pts incorrect). True/False (no work is needed; if there

is work, but the reasoning is incorrect, the answer will count as incorrect). Given

the ODE (0.1) with initial condition

y(1) = 1,

the theorem tells us the solution to this IVP is not unique.
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