University of Colorado Boulder

Math 3430, Exam 1
Fall 2019

NAME. So/wwwhs

Question | Points | Score
1 20
2 20
3 20
4 20
5 20
Total: 100

e No calculators or any electronic devices are allowed at any time.

e Read instructions carefully. Show all your reasoning and work for full credit unless indicated otherwise.



Math 3430 Exam 1 Fall 2019

1. (20 points) Short answer questions.

(a) (10pts) Find all equilibrium solutions and determine the stability of each equilib-
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(b) (10pts) Which type of substitution would allow you to solve the following ODE by

transforming it from nonlinear to linear?

y'y +y°Inz =¢”

Make the substitution, and €@ fill in the blanks below. DO NOT SOLVE the
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2. (20 points) (a) (15pts) Find all solutions, i.e., the general solution, to the following
ODE. If there is a possibility of dividing by zero, address it.
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(b) (5pts) Use part a) to solve the following initial value problem. In your final answer,
state the interval of existence for the solution y.
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3. (20 points) Find the general solution of the following ODE. If there is a possibility of
dividing by zero, address it.

xy + 3y = 4a cos(x?)
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4. (20 points) Find the general solution of the following ODE.

(sin®z — 3y?)y’ = —2 — 2ysinz cosx
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5. (20 points) Recall the following theorem

Theorem. Consider

dy
% - f(l',y)7 y(ﬂ?

0) = Yo-
o (Ezistence). If f(x,y) is continuous in an open rectangle R

(%)

= (a,b) x (¢, d) in the zy-

plane that contains the point (xo,yo), then there exists a solution y(z) to the (IVP)
(x) that is defined in an open interval I = («, B) containing x

e (Uniqueness) If the partial derivative g—g ]

of (x) is unique.

is continuous in R, then the solution y(x)
Consider an ODE

dy

=y 1)
(a) (18 pts) Given the ODE (0.1) with initial condition

(0.1)
y(1) =0,

can we apply the theorem to say there exists a unique solution to this IVP? Justify,
and draw your rectangle R
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(b) (2 pts correct, 1 pt blank, -1 pts incorrect). True/False (no work is needed; if there

is work, but the reasoning is incorrect, the answer will count as incorrect)
the ODE (0.1) with initial condition
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