Solutions to HW6
6.1 L is linear if we can show

$$
\begin{equation*}
L(\alpha f+\beta g)=\alpha L f+\beta L g \tag{1}
\end{equation*}
$$

We can use derinatives \& multiplication by a fiseel function is a linear operator.
We also use that it $L_{1} \& L_{2}$ are two ope raters, then $\left(L_{1}+L_{2}\right)(f):=L_{1} f+L_{2} f$

$$
\text { 6.1 a) L} L=a \frac{d^{2}}{d x^{2}}+b \frac{d}{d x}+c \quad a, b, c \in \mathbb{R}
$$

$$
\begin{aligned}
& \text { Consider } \\
& L(\alpha f+\beta g)=\left(a \frac{d^{2}}{d x^{2}}+b \frac{d}{d x}+c\right)(\alpha f+\beta g) \\
& \lambda=a \frac{d^{2}}{d x^{2}}(\alpha f+\beta g)+b \frac{d}{d x}(\alpha f+\beta g)+c(\alpha f+\beta g)
\end{aligned}
$$

by (2)
by (1)

$$
\text { (1) } \alpha\left(\omega \frac{d^{2}}{d x^{2}} f+b \frac{d}{d x} f+c f\right)+B\left(a \frac{d^{2}}{d x^{2}} g+b \frac{d}{d x} g+c \eta\right)
$$

by perputives of neat A's $^{\prime}$

$$
=\alpha L f+B L g
$$

$\Rightarrow L$ is linear.
6.1b) $\left.L=\frac{d}{d x}+\ln \right\rvert\, \cdot 1$ whim means $L y=y^{\prime}+\ln |y|$. B/C of the term Inll, we suspect the operatior is nonlinenr. So 4 is enongh to
show $L(a f) \neq a L f \quad(a \neq 1)$

$$
\begin{aligned}
& L(a f)= a f^{\prime}+\ln |a f| \\
& a L f=a(f \prime+\ln |f|) \text { and } b / c \\
& \ln |a f| \neq \text { aln}|f| \text { if } a f \mid
\end{aligned}
$$

L is nonlinear.

$$
\begin{aligned}
& \text { 6.1c) } \\
& L(a f+b g)=\frac{d x^{2}}{d x^{2}}(a f+b g)-\ln x(a f+b g) \\
& \text { by (2) } \\
& =a \frac{d^{2}}{d x^{2}} f+b \frac{d^{2}}{d x^{2}} g-a \ln x f-b \ln x g \\
& \text { by (1) } \\
& =a\left(\frac{d^{2}}{d x^{2}} f-1 n x f\right)+b\left(\frac{d^{2}}{d x^{2}} g-\ln x g\right) \\
& =a L f+b L g \\
& \begin{array}{c}
\text { (grouping all the terns w/a } \\
\text { ew/b) }
\end{array} \\
& \Rightarrow L \text { is linear. }
\end{aligned}
$$

6.2 Thu: Multiplication by a treed funding defines a linear operator.
Roof: Let the function be given. Call of $h(x)$.
Define $L f=h f$
or equivalently $(L f)(x)=h(x) f(x)$
Then

$$
\begin{aligned}
& \text { Then } \\
& L(a f+b g)=h(a f+b g) \\
&=h a f+h b g
\end{aligned}
$$

proputics
of roan \#'s

$$
\begin{aligned}
y & =a h f+b h g \\
& =a L f+b L g
\end{aligned}
$$

as needed.
Remark: We used this Thu in Problem 6.).
6.3
a) $L y=0 \quad L=a \frac{d^{2}}{d x^{2}}+b \frac{d}{d x}+c \quad a, b, c \in \mathbb{R}$

The ODE is linear b/c L is linear.
The ODE is homogeneous, b/c we have $L y=g$ where $g \equiv 0$.
b) $L y=0 \quad L=\frac{d}{d x}+\ln |\cdot|$

Nonlinear, b/c L is nonlinear.
Homogeneous, b/c $L y=0 \quad(g \equiv 0)$.
c) $L y=e^{x} \quad L=a \frac{d^{2}}{d x^{2}}+b \frac{d}{d x}+c \quad a, b, c \in \mathbb{R}$ Linear, b) $c L$ is linear.
Inhomogeneous, $b / c \quad L y=e^{x}$, so

$$
g=e^{x} \neq 0
$$

d) $L y=y \quad L=a \frac{d^{2}}{d x^{2}}+b \frac{d}{d x}+c \quad a, b, c \in \mathbb{R}$

$$
\Leftrightarrow\left(a \frac{d^{2}}{d x^{2}}+b \frac{d}{d x}+(c-1)\right)^{d x} y=0
$$

We could show \tilde{L} is hear same proof as in 6.1 w) $c \rightarrow(c-1))$
\Rightarrow The ODE is linens \& homogeneous:
$\left(\tau_{y}=0\right.$, \tilde{L} is linear \& $\left.g=0\right)$
6.3e) $\left.L y=\ln |y|+\ln x \quad L=\frac{d}{d x}+\ln \right\rvert\, .1$

$$
\begin{aligned}
& \Leftrightarrow \frac{d}{d x} y+\ln |y|=\ln |y|+\ln x \\
& \Leftrightarrow \frac{d}{d x} y=\ln x \\
& \Rightarrow \text { linear } \quad \tilde{L}=\frac{d}{d x}
\end{aligned}
$$

inhomogeneous $g=\ln x \neq 0$
6.4
a) $y^{\prime \prime}-y=0 \quad L=\frac{d^{2}}{d x^{2}}-1 \quad L y=0$
linear \& homogeneous
b)

$$
y^{\prime}=\ln x \quad L=\frac{d}{d x} \quad L y=\ln x
$$

linear e inhomogeneous: $g=\ln x$
c)

$$
\begin{aligned}
y^{\prime}+(\sin x) y-1=0 \quad L & =\frac{d}{d x}+\sin x \\
g & =1 \\
L y & =1
\end{aligned}
$$

Linear \& inhomogeneous
d) $y^{\prime \prime}+b y^{\prime}+c y=y^{2}$
nonlinear \& homogeneous

$$
\left(y^{\prime \prime}+b y^{\prime}+c y-y^{2}=0\right)
$$

e)

$$
\begin{aligned}
& y^{\prime \prime}+x^{2} y^{\prime}-x y=e^{x} \\
& L^{\prime}=\frac{d^{2}}{d x^{2}}+x^{2} \frac{d}{d x}-x \quad g=e^{x}
\end{aligned}
$$

linear $\&$ in homogeneous

