Solutions to HWG

6.1 L'is linear it we can show L(xf+Bg) = xLf+BLg ¥x,BeR Ne can use derivatives & multiplication by a fixed function is a linear operator. (1) We also use that it $L_1 \& L_2$ are two operators, then $(L_1 + L_2)(f) := L_1 f + L_2 f$ (2) G.1a) L= $a\frac{d}{dx^2} + b\frac{d}{dx} + c a_1b_1c \in \mathbb{R}$ Consider $L(af+Bg) = \left(a\frac{d^{2}}{dx^{2}} + b\frac{d}{dx} + c\right)\left(af+Bg\right)$ Consider $b_{y}(2) = \alpha \frac{d^{2}}{dx^{2}} (\alpha f + \beta g) + b \frac{d}{dx} (\alpha f + \beta g) + c (\alpha f + \beta g)$ $= \alpha \frac{d^{2}}{dx^{2}} f + \alpha \beta \frac{d^{2}}{dx^{2}} g + b \frac{d}{dx} f + b \beta \frac{d}{dx} g + c \frac{d}{dx} f + c \beta g$ $= 0 \frac{d^{2}}{dx^{2}} f + \alpha \beta \frac{d^{2}}{dx^{2}} g + b \frac{d}{dx} \frac{d}{dx} f + b \beta \frac{d}{dx} g + c \frac{d}{dx} f + c \beta g$ $= 0 \frac{d^{2}}{dx^{2}} f + \alpha \beta \frac{d^{2}}{dx^{2}} g + b \frac{d}{dx} \frac{d}{dx} f + b \beta \frac{d}{dx} g + c \frac{d}{dx} f + c \beta g$ $= 0 \frac{d^{2}}{dx^{2}} f + \alpha \beta \frac{d^{2}}{dx^{2}} g + b \frac{d}{dx} \frac{d}{dx} f + b \frac{d}{dx} \frac{d}{dx} g + c \frac{d}{dx} f + c \beta g$ $= \alpha \left(\alpha \frac{d^2}{dx^2} f + b \frac{d}{dx} f + c f \right) + B \left(\alpha \frac{d^2}{dx^2} g + 5 \frac{d}{dx} g + c g \right)$ by properties thread H's $= \alpha L f + B L g$ => L is linear.

6.1b)
$$L = \frac{d}{dx} + \ln|\cdot|$$
 shift means $Lg = b^{1} + \ln|y|$.
Ble of the term $\ln|\cdot|$, we suspect the operator
is nonlinear. So it is enough to
show $L(\alpha f) \neq \alpha L f$ $(\alpha \neq 1)$
 $L(\alpha f) = \alpha f^{1} + \ln|\alpha f|$
 $\alpha L f = \alpha(f^{1} + \ln|f|)$ and b/c
 $\ln|\alpha f| \neq \alpha \ln|f|$ if $\alpha \neq 1$
 L is nonlynear.
6.1c) $L = \frac{d^{2}}{dx^{2}} - \ln x$
 $L(\alpha f + bg) = \frac{d^{2}}{dx^{2}} (\alpha f + bg) - \ln x(\alpha f + bg)$
 $bg(2)^{1} = \frac{d^{2}}{dx^{2}} f + b\frac{d^{2}}{dx^{2}} g - a\ln x f - b\ln x g$
 $bg(3)^{2} = \alpha (\frac{d^{2}}{dx^{2}} f - \ln x f) + b(\frac{d^{2}}{dx^{2}} g - \ln x g)$
 $= \alpha (\frac{d^{2}}{dx^{2}} f - \ln x f) + b(\frac{d^{2}}{dx^{2}} g - \ln x g)$
 $= \alpha L f + b L g$ (sronping we the terms w/n
 $= \alpha L f + b L g$

6.2 Thm: Multiplication by a fixed fundation
defines a linear operator.
Roof: Let the function be given . Call of h(x).
Define
$$Lf = hf$$

or equivalently $(Lf)(x) = h(x) f(x)$
Then
 $L(af+bg) = h(af+bg)$
 $= haf + hbg$
 $proputations$
of rout #'s
 $= a hf + bhg$
 $= a Lf + bLg$
as needed.
Remark; We used this Thm in Problem 6.1.

6.3
A)
$$Ly = 0$$
 $L = a \frac{d^2}{dx^2} + b \frac{d}{dx} + c$ $a, b, c \in \mathbb{R}$
The ODE is linear blo L is linear.
The ODE is homogeneous, blo we have
 $Ly = g$ where $g \equiv 0$.
b) $Ly = 0$ $L = \frac{d}{dx} + |h|!|$
Nonlinear, blo L is nonlinear.
Homogeneous, blo Ly = 0 ($g \equiv 0$).
c) $Ly = e^{X}$ $L = a \frac{d^2}{dx^2} + b \frac{d}{dx} + c$ $a, b, c \in \mathbb{R}$
Linear, blo L is linear.
Thomogeneous, $b \mid c$ $L y = e^{X}$, so
 $g = e^{X} \neq 0$,
d) $Ly = y$ $L = a \frac{d^2}{dx^2} + b \frac{d}{dx} + c$ $a, b, c \in \mathbb{R}$
 $<= (a \frac{d^2}{dx^2} + b \frac{d}{dx} + (c-1)) = 0$
 $\sum_{i=1}^{N} (a \frac{d^2}{dx^2} + b \frac{d}{dx} + (c-1)) = 0$
 $\sum_{i=1}^{N} (a - i) = b \frac{d}{dx} + (c-1) = 0$
 $\sum_{i=1}^{N} (a - i) = 0$
 $\sum_{i=1}^{N} (a$

6.3e)
$$Ly = \ln |y| + \ln x$$
 $L = \frac{1}{dx} + \ln |x|$
(3) $\frac{1}{dx}y + \ln |y| = \ln |y| + \ln x$
(3) $\frac{1}{dx}y = \ln x$
(4) $\frac{1}{dx}y = \ln x$
(5) $\frac{1}{dx}y = 0$ $L = \frac{1}{dx}z - 1$ $Ly = 0$
Linear $\frac{1}{dx}z - 1$ $Ly = 1$
Linear $\frac{1}{dx}z - 1$ $Ly = \ln x$
Linear $\frac{1}{dx}z - 1$ $Ly = 1$
Linear $\frac{1}{dx}z - 1 = 0$ $L = \frac{1}{dx}z + s \ln x$
() $\frac{1}{y}z + (sinx)y - 1 = 0$ $L = \frac{1}{dx}z + s \ln x$
 $\frac{1}{y}z = 1$
Linear $\frac{1}{dx}z + \frac{1}{dx}z - \frac{1}{dx}z = 0$
() $\frac{1}{y}z + \frac{1}{y}z + \frac{1}{dx}z - \frac{1}{dx}z = 0$
() $\frac{1}{y}z + \frac{1}{x}z + \frac{1}{dx}z - \frac{1}{dx}z = \frac{1}{dx}z + \frac{1}{dx}z \frac{1}{dx$