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Chapter 1

Introduction

In this dissertation we study two geometric wave equations that can be
obtained from Anti-Self-Dual Yang Mills (ASDYM) equations on R**2. We
begin by introducing the equations and discussing the main results. Subse-

quently we provide summary of all the chapters.

1.1 Space-time Monopole and Ward Wave Map equa-
tions

The space-time Monopole Equation is given by
(ME) Fy =%Dy9,

where Fy is the curvature of a one-form connection A on R?™! Dy¢ is a
covariant derivative of the Higgs field ¢, and * is the Hodge star operator with
respect to the Minkowski R?*! metric.

The Ward Wave Map equation is
(WWM) (J T = (T e — (T )y =T TN, =0

where J is a map from R?*™! into a Lie group, typically taken to be SU(n) or

U(n), and [-, -] is a Lie bracket. By selecting a proper gauge we can reduce



(ME) to (WWM). We show this in Chapter 4 whereas in Chapter 3 we show
how to obtain (ME) from (ASDYM).

Both equations were introduce by Richard Ward: (ME) in [31] and
(WWM) in [30]. We now provide some historical background.

Space-time Monopole Equation

Electric charge is quantized, which means it appears in integer multiples of an
electron. This is called the principle of quantization and has been observed
in nature. The only theoretical proof so far was presented by Paul Dirac in
1931 [7]. In the proof Dirac introduced the concept of a magnetic monopole,
of an isolated point-source of a magnetic charge. Despite extensive research
magnetic monopoles have not been found in nature. The magnetic monopole
equations are also called Bogomolny Equations. The space-time monopole
equation can be viewed as the space-time analog of Bogomolny Equations.
In fact, both equations have exactly the same coordinate free form. The
difference is that in Bogomolny Equations the base manifold is R? instead of
R?T!. In addition, both equations are examples of integrable systems and have
equivalent formulations as Lax pairs [5].

It is needless to say a lot of work has been done for the magnetic
monopoles. For example, see books by Jaffe and Taubes [11] and Atiyah and
Hitchin [1]. The literature for (ME) is less abundant. Ward studies it in [31]
from the point of view of twistor theory, and investigates its soliton solutions

in [32]. Recently, Dai, Terng and Uhlenbeck gave a broad survey on (ME)



in [5]. In particular, using scattering transform they show global existence
and uniqueness up to a gauge transformation for small initial data in W21,
All in all, the equation has received some interest in the recent years, but its
well-posedness theory remains widely open. The objective of this thesis is to
try to fill this gap by specifically treating the Cauchy problem for rough initial

data in H?®.
Ward Wave Map

(WWM) was introduced by Ward in [30] to provide an example of an inte-
grable model in 2+ 1 dimensions that would exhibit traveling solitons. In [29]
Villarroel used inverse scattering methods to construct soliton solutions. This
was followed by Fokas and loannidou [8]. Dai and Terng constructed all soli-
tons in [4] (also see [5]). loannidou and Ward presented an infinite sequence
of conserved quantities in [10]. Nevertheless, and similarly to (ME), questions
of well-posedness have not been considered before.

The main result concerning (ME) is contained in the following theorem.

Main Theorem 1. The space-time monopole equation (ME) in a Coulomb

gauge 1is locally well-posed for initial data sufficiently small in H*(R?) for s >

=

The corresponding result for (WWM) is

Main Theorem 2. Ward Wave Map is locally well-posed for initial data in
H*(R?) x H**(R?) for s > 2.



We make the notion of local well-posedness precise in Chapter 2. For

now, we motivate the above results.

Written in coordinates, (ME) is a system of first order hyperbolic partial
differential equations. The unknowns are a pair (A, ¢). If (A, ¢) solve the

equation, then so do
MM, Ax) and  Ap(Mt, Ax),

for any A > 0. This results in the critical exponent s. = 0 such that the homo-
geneous Sobolev space H*(R") is invariant under the above scaling. (WWM)

scales the same as a wave map i.e., if J solves (WWM), then so does
J(At, \x),

for any A > 0. Hence (WWM) is critical in H'(R?). Since in general one
expects local well-posedness for s > s. the goal is to show (ME) is well-posed
for s > 0 and (WWM) for s > 1. However, the two spatial dimensions create
an obstacle, which so far only allows s > 71; and s > % respectively. We explain
this now.

In Section 3.3 (ME) is reformulated as a system of semilinear wave

equations coupled with an elliptic equation. Schematically it looks as follows
NAy = E(Ou, v, Ay),
Cu = B4 (Ou, v, Ay), (1.1)

v = B_(du, dv, Ay),



where €, B are bilinear forms!, and A is the nondynamical part of the con-
nection A. du, v denote space-time derivatives of v and v respectively, and
are given in terms of ¢ and spatial part of A. As a result, showing well-
posedness of (ME) for s > 0 can follow from showing (1.1) is well-posed for
s > 1. Also, the most difficult nonlinearity that we have to handle is contained
in B4 (Ou,dv, Ag). Luckily, it exhibits a structure of a null form. There are

two standard null forms

Qo(u,v) = =0wudw + Vu - Vo, (1.2)

Qo,p(u,v) = 0,udgv — 0zud,v. (1.3)

For these kind of nonlinearities one can assume much less regularity of the ini-
tial data than for general products. (See counterexamples for general products
found in Lindblad [20] [21].) We uncover the null forms @,z in our system
of wave equations as well as a new type of a null form which is related to
(Qap. Unfortunately, the results in two spatial dimensions for (),3 are not as
optimal as they are in higher dimensions or as they are for (Qy. In fact, the
best result in literature so far for Q.5 in two dimensions is due to Zhou [33].
He establishes local well-posedness for initial data in H* x H*™! for s > g. In
addition, by examining the first iterate Zhou shows that this is as close as one
can get to the critical level using iteration methods. On the other hand, for
dimensions n > 3 Klainerman and Machedon [17] showed almost optimal local

well-posedness in H® x H*"! for s > 5. Work of Klainerman and Machedon

1See Section 3.3 for the precise formula for € and B..



[15] and Klainerman and Selberg [18] gives as satisfying results for )y, and in
all dimensions n > 2.

Now, one of the nonlinearities in the system (1.1) is Q,g, so showing
(1.1) is locally well-posed for s > g would be sharp by iteration methods. This
is what we do in this thesis, and as a result we obtain local well-posedness of
(ME) in the Coulomb gauge for s > 1 (See the full statement of the theorem
in Chapter 3). However, (1.1) is not exactly (ME), so we hope to treat (ME)
directly in the near future and improve the results. What should be mentioned
here is that we have considered other traditional gauges such as Lorentz and
Temporal, but they have not been as nearly useful as the Coulomb gauge.
Perhaps other, less traditional gauges could be used. Moreover, we note that
even the estimates involving the nondynamical variable A, seem to require
s> 1.

To finish the discussion on (ME) we add that our system (1.1) resembles
a system considered by Selberg in [23] for the Maxwell-Klein-Gordon (MKG)
equations, where he successfully obtains almost optimal local well-posedness
in dimensions 1 4+ 4. Besides the dimension considered, there are two fun-
damental technical differences from the point of view of our problem. First
comes from the fact that the monopole equation is an example of a system
in the non-abelian gauge theory whereas MKG is an example of a system in
the abelian gauge theory. The existence of a global Coulomb gauge requires
smallness of initial data in the former, but is not needed in the latter. An-

other technical difference arises from Selberg being able to solve the elliptic



equation for his nondynamical variable using Riesz Representation theorem,
where he does not require smallness of the initial data. Our elliptic equation
is more difficult, and so far we need the restriction on the size of the initial
data. Finally, we should point out that the proof of our estimates involving the
nondynamical variable A is modeled after Selberg’s proof in [23]. However,
the two dimensions again complicate matters, and we have to work harder to

obtain needed estimates (see Sections 3.4.5 and 3.5).

The above exposition is closely related to (WWM). This is because we
can rewrite (WWM) so it has a form of a wave equation together with Qg
and @¢; nonlinearities. General framework developed by Selberg [23] makes
the proof of Main Theorem 2 very easy and with no need for small initial
data. However, with the presence of @y, s > g is the best we can do with the

iteration methods.

1.2 Chapter Summaries

Chapter 2: We review the classical results for semilinear wave equations and
the improvements one obtains when the nonlinearity has a structure of a null
form. We also introduce the function spaces and the main estimates used as
well as rewrite the needed null form estimates in the context of the spaces we
use here. Finally we provide some new estimates related to null forms which

are required in the later chapters.



Chapter 3: This chapter is devoted to the space-time Monopole Equation.
We take a closer look at the equations and consider its gauge invariance. We
write (ME) as a system of wave equations coupled with an elliptic equation
and establish the local well-posedness result. In the process we uncover a new
null form for which we prove estimates needed to close the Picard iteration.

We also present a variety of elliptic estimates for the nondynamical variable Ay.

Chapter 4: In this chapter we discuss the Ward Wave Map. We show the
derivation of the equation from (ASDYM), establish conservation of energy

and prove the local well-posedness theorem.

Appendices: In appendix A we verify conditions of two theorems that are
extensively used throughout several proofs. In Appendix B we show some

simple bilinear estimates, which we quote during the proof of Theorem 3.4.2.



Chapter 2

Preliminaries

In this chapter we would like to introduce function spaces and estimates
used, as well as give an overview of null forms. Therefore, the first half of the
chapter is mostly a review of a well known material. In the second half we
establish known null form estimates in the context of the spaces used in this

dissertation. We also add some new estimates related to null forms.

2.1 Notation

a < b means a < Cb for some positive constant C. @ denotes the
Fourier transform of u, and u X v means |4 < C0 for some C' > 0. A point in
the 2+ 1 dimensional Minkowski space is written as (¢,2) = (z%)p<a<2. Greek
indices range from 0 to 2, and Roman indices range from 1 to 2. We raise and
lower indices with the Minkowski metric diag(—1,1,1). We write 0, = 0Oy
and 9, = 0y, and we also use the Einstein notation. Therefore, 9'0; = A,
and 0“0, = —0? + A = [0. When we refer to spatial and time derivatives of a
function f, we write 0f, and when we consider only spatial derivatives of f, we
write Vf. Also, D® = (—A)=. Finally, d denotes the exterior differentiation

operator and d* its dual given by d* = (—1)* % * * dx, where * is the Hodge



% operator and k comes from d* acting on some given k-form. It will be clear
from the context, when * and d* operators act with respect to the Minkowski

metric and when with respect to the Euclidean metric.

2.2 Function Spaces & Inversion of the Wave Operator

We use Picard iteration to find solutions for our equations. Here we
introduce the spaces in which we perform the iteration.

First we define following Fourier multiplier operators
Af(€) = (1+[¢[*)2 £(9),
R3u(r,§) = (1+ 72+ [¢) 5a(r, ), (2.1)

- 2 1202 \ 2
A?u(7,§)—(1+1(:LT2—If||£)|2) a(r,8),

where the symbol of A® is comparable to (1+ ||7] —[£]|)*. The corresponding
homogeneous operators are D, D, , and D_ respectively. We set the following

notation for the symbols

wi(r,8) =1+ |7+ [¢], w7 8) = 7|+ €],

(2.2)
U)_(T7€):1+“T|—|§H, U}_(T,g):‘|7|—|§||
The spaces of interest are H*? and H*? with norms given by
Hu\ Hs0 — HASAguHLz(RzH), (23)
HUHg{s,G = HUHHS,G + HatUHHS—l,H. (24)
An equivalent norm for 3% is |Ju|ge0 = [|A* T ALAY w2 g1y

These spaces, together with results in [24], allowed Klainerman and

10



Selberg to present a unified approach to local well-posedness for Wave Maps,
Yang-Mills and Maxwell-Klein-Gordon types of equations in [18]. See [26] for
a general exposition.

By results in Selberg’s thesis [22] if > § we have

H*Y — Cy(R, H?), (2.5)

HY — Cy(R,H®)NCHR, H*™). (2.6)

This is a crucial fact needed to localize our solutions in time!. We denote the

corresponding restrictions to the time interval [0, T for some T by
H? and 3P

H*? spaces are a very appropriate setting for a local well-posedness of
wave equations. The main idea is that when solving a wave equation locally in
time, we can replace (17! by AjrlA:l. This goes back to the papers of Bourgain
for the Schrédinger and KdV equations [2], and subsequently to the work of
Kenig-Ponce-Vega for the KdV [12]. Klainerman-Machedon proved the first
estimates for the wave equation in [15]. However, in their paper they require
small initial data. This assumption was removed by Selberg in [24], where he
showed that by introducing e small enough in the invertible version of the wave

*¢ we can use initial data as large as we wish?. In [24]

operator i.e., AT'AZ
Selberg also gives a very useful, general framework for local well-posedness of

wave equations. Indeed

1See [24] for more details.
2See also [18] Section 5 for an excellent discussion and motivation of the issues involved
in the Picard iteration.

11



Theorem 2.2.1. ([24] Theorem 2),([18] Theorem 5.3 and 5.4) Given

where u takes values in RV and N is a map
N3 — D
which is

e time-translation invariant: N(u(- +¢,-)) = N(u)(- + ¢t,-),
e local in time: if u|; = v|;, I an open interval, then N(u)|; = N(v)|,
e N(0) =0.

If for some € > 0 we have

AT AT N 310 S Alullgesn0),

IATTATITE N () = N(©) g0 S A'(max(Jullgersro, [vllggr10)) u = vllggesis,
where A and A’ are continuous and A(0) = 0, then (x) is locally well-posed®

for initial data in H*t! x H*.

2.3 Estimates Used

There are many estimates that are fundamental for our results. We

state them without a proof and refer the reader to the original sources for the

s+1,0
T =

3Local well-posedness is meant here in the sense defined in Section 2.4 with ¥
Y(T).

12



details.

The first estimate is a consequence of a theorem by Klainerman and
Tataru [19]. We state it for two dimensions only (the original result holds for
n > 2), and as it was given in [18].

Klainerman-Tataru Theorem. Let 1 < p < o0, 1 < ¢ < co. Assume that

1 1 1
S<o(1-2), (2.7)
p 2 q
1 1
O<a<2(1————>, (2.8)
q p
<1 SR (2.9)
S1, 82 - ==, .
q 2p
+ 89+ 0 =2(1 L1 ) (2.10)
$1+ S2+0 = —-—— =) .
1 2 q 2p
Then
D™ (wv)||rra@ey S 1wl gorol|v mozes (2.11)

provided 6 > %
The theorem was first established for the time-spatial operator D, . The proof
for the spatial operator D was shown by Selberg in [22].

Another important estimate is a version of the Sobolev embedding in
the context of the H*? spaces.

Klainerman-Selberg Theorem [18] The embedding

holdswhenever2§p§00,2§q<oo,§§(n—1)( —%) and 0 > 1.

1
2

This is a simple, but a very useful result proved using the triangle inequality.

13



Lemma 2.3.1. (Product Rule) [18] If a > 0, then
A%(uwv) 3 (A%u)v + ul®v,

for all u,v with u,v > 0. Moreover, the same estimate holds with A“ replaced

by either of the operators D, D, or A,.

The previous lemma suffices when we work in L?. However for a general

product rule in LP, we need a more sophisticated lemma

Lemma 2.3.2. (Leibniz Rule in L?) [27] Let s > 0,1 < p < o0,

1fgllwsr < CllfllLallgllwsa + CllgllLr [Lf e

provided

1 1 1 1 1
—=—+—=—+4—, @2 € (1,00),q1,71 € (1,00].
p 91 Q2 L

The following follows from Lemma 2(ii) on p. 133 in Stein [25] and is

stated in [23] as Lemma 3, which we now reproduce.

Lemma 2.3.3. Fora >0 and 1 < p < oo,
[A%ullze S llullze + [1D%ul| e,
where the suppressed constant only depends on «.

Lemma 2.3.4. Let n =2 and 0 > %, then

lullee S llullgoe, 2 <p< oo,

14



Proof. Interpolate between

H* — L
and (2.5) with s = 0. O
Theorem 2.3.5. ([18], Theorem 7.2) Let s > % and 5 < 0 < s — “>1. Then
oo . [0 o, o
for all a, o satistying

0<a<i,

—s+a<a<s.
Hence, by duality, for all -0 < a <0 and —s <a < s+ a.

One special case is the following

Theorem 2.3.6. ([18], Theorem 7.3) H*? is an algebra if s > 2 and £ < 0 <

We have a definition before we state the final theorem.
Definition 2.3.1. For o > 0 define operator R by
Ra(u)(Ta g) - // 7,04(7_ - )‘7 /\7§ -n, 77)@(7' - )‘75 - 77)@()‘7 U)d)‘

where

_ K+l =1+ if TA>0,

15



We give the result for n = 2. The original holds for n > 2.

Theorem 2.3.7. [18] Let n = 2, The estimate

IDYRY (u, v) [ 22(RY?) S 1D ]l o | D**v ]| o,

holds whenever 6 > % and s1, So,7,7- satisfy the following conditions:

1
THY-=st s,
>1
’7—_47
- 1
Y 9
1
51§77+§a 221727
1
81+82 > 57
3 1
(Szu’y—) 7é (17_1>7

2.4 Classical Results

(2.12)

We begin by making precise what we mean by local well-posedness.

Definition. Local Well-Posedness (LWP) Given initial data (f, g) in H® X

H*~! the Cauchy problem

. Ou = F(u, 0u),
(*) { (u, ug)|i=0 = (f, 9),

is locally well posed in H® x H* ! if:

16



e (Local Existence) There exist time T = T'(||f||zs + ||g]

Hs—l) > O, a
space Y (T) — C([0,T], H*) N C'([0,T], H*~'), and a function u € Y (T')
which solves (%) on Sr = [0,7] x R" in the sense of distributions and

such that the initial conditions are satisfied.
e (Uniqueness) u is the unique solution of (x) in Y (7).

e (Continuous Dependence on Initial Data) For any (f’,¢’) suffi-
ciently close to (f,g) there exists ' € Y(T') which solves (x) on Sr

and

lu = wlly ey < CUIf = I

e+ lg = g'llmr)-

The classical result relying only on energy estimates can be stated as
follows

Classical Local Well-Posedness Theorem. Consider the system
(%) Ou = F(u, du),

where v : R"™ — RN and F is a smooth R¥-valued function satisfying F(0) =
0. Then (%) is locally well-posed for initial data in H* x H*}(R"™) for all

s>g+ 1
Proof. See [18]. O

In 2D this translates to s > 2. Further improvement can come from

Strichartz estimates which allow us to only assume s > 5 However as it was

17



shown by Lindblad [20] [21] this is sharp for general products. One example
is
u = (Ou)?

which is critical in H!, but we need s > ;Z to obtain LWP.

2.5 Null Forms

The null condition was introduced by Klainerman [16], and it was first
applied to produce better local well-posedness results for wave equations with
a null form by Klainerman and Machedon in [14]. As mentioned in the intro-

duction, wave equations with a null form
Qo(u,v) = =0wwdyw + Vu - Vv

as the nonlinearity allow for optimal results [15] [18] in all dimensions n > 2,

whereas the presence of
Qaﬁ(“? U) - 80(“8,87) - aguﬁav

in 2D stops us % away from the critical level if we wish to use Picard iteration.

This was first showed by Zhou in [33]. Here is the result

Proposition. [33] Consider in R*™! the Cauchy problem

T = Q12(, @), (u, ur)|i=0 = (0,0),

where ¢, ¢ solve

D¢ = 07 (¢7 ¢t)|t=0 = (f7 0)7

Lip = 07 (907 th)ltzo = (g7 0)7 (213)

18



and

f.geH

[fo<s< }l, then the first iterate u fails to be in H*™! and more precisely the

following estimate fails

||(9tu|

=+ [[Vul

we < C(t)]|f]

Hst1 ||g| Hst+1.

The necessity of s > % can be also seen from the results of Foschi

and Klainerman (see Sect. 13 [9]), and from the appendix of Klainerman and

Selberg [18].

2.5.1 Symbols

Here we only review symbols and their estimates related to Q). Con-

sider

—_—

Qui(u,v)(1,6) = duxQu(1,€) — Dyu * Jo(r, €)
= - // (7= Nmy = (& =) A)a(r = X, & = n)o(A, n)dAdn

It follows the symbol of @);;, denoted by ¢, is
0 (1,6, A, m) = T0; — A
Similarly, the symbol of @);;, denoted by g;;, is
ai;(&: ) = &my — ni;.
We have the following estimates

19



Lemma 2.5.1. If ¢;;(§,n) = &n; — n;&;, then

2 2
a; < 2lElnl(Elnl F € -n) = { EHZ:EEETJ@D— ||§||§_+|Z||,2) (2.14)
and
a3 < Clelinl (1161 Inll + 1€ + ]
X (- (7 + X )+ w (7€) + w_ (A ), (2.15)

where w_(-,-) is as in (2.2).

Proof. The first bound in (2.14) is obvious once one observes that

ai; < 1€ x 0> = [EFmI* — (& -m)* = ([€llnl = & n)(I&lInl + € - m),

and the second part of the inequality can be checked by direct computation
[33][13][17].

To show (2.15) one uses (2.14). The proof can be found in [33] (compare
with [13] [17].) O

Lemma 2.5.2. [17]

v)+ D} (DFuD?D3v). (2.16)

| vl
=

(D¥uD%v) + D}(DZD¥uD

N|=

Qz’j(uv U) :5 DzD

Now we would like to examine the symbol ¢; more carefully. First of
all, if we were to consider ();; in the first iterate or in general, for any functions
u, v, whose Fourier transform is supported on a light cone 7 = £[¢|, ¢;; would

reduce to

+[n; F nl§; or £ [&ln; £ nlé;,

20



depending if @, 0 are both supported on a forward light cone (++ interactions),
or on a backward light cone (—— interactions), or @ is supported on a forward
light cone and ¥ on a backward light cone (4+— interactions) or finally, «
is supported on a backward light cone and v on a forward light cone (—+
interactions). It is enough to just consider ++ and +— interactions. The

corresponding symbols are

o+(&,n) = &n; F [nlé;-

o+ is usually referred to as the reduced symbol. There is a relationship between

¢; and o4 that can be seen in the following lemma.

Lemma 2.5.3.

7| = &l {In] + Al = [nl|€] + o4 (&, m) if TA >0,
7| = 1&l]lnl + 1Al = [nl{|¢] + 0-(&n) if TA <O.

qtj(T7 57 Av 77) S {
Proof. Suppose 7, A > 0, then

;= §A = (1= [EDn; + (In] — A& + oy

The rest of the signs follows similarly. ]

We can establish similar estimates for o4 as the ones we have for g¢;;.

Lemma 2.5.4. Let oy = |{|n; F |n|¢;, then

ol < 4¢llml (€l F € - n), (2.17)
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and
it A2 0, of < Clelinl (Ig] + Il + g + )
X (w_ (T + N, E+n) +w_(7,8) +w_(A,7n)).
it A <0, o2 < Clelnl (11l = Inll + 1€ + )

X (w1 + A&+ n) +w(7,§) +w_ (A7)

(2.18)

Proof. To show (2.17) we first observe that o, can be viewed as one of the

components of a cross product of X = (&, |£|) with Y = (5, =|n|). Therefore
o (€ )" < X x Y]

= |XP[Y] = (X -Y)?

= (XY= X-YV)([X|Y]+ X -Y).
Then for o, we have,

o (&P = (IX]|Y| = X - Y)(IX|IY]+ X -Y)
= Qlelnl =& - n = ElmDIXIY]+ X - Y)

< 4f¢lnl(I€lInl =& - n)-

And for o_,
o (& n)* = (XY - X -Y)(IX][Y|+ X -Y)
= (XY= X - Y)2lElInl + & n — [ln])
< 4f¢lInl(€lInl + & - n),
as needed.

Now (2.15) follows from Proposition 5.1 in [13] that says

o1 (€,m) < cl€Zml2 (1] + Inl — |€ +nl)2(l] + [n])?

o_(&,m) < clélZml2 (1€ +nl — |le] — Iz (€ +n)2,
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and from Corollary 1 also in [13], which gives that if 7A > 0, then
1 . . .
SllEl+ Il =& +nll < w(r, &) +w(A,n) + (T + A & +n),

and if 7A <0, then

S1E+ 0l = llel = oll (7€) + B, n) + T + A, €+ 1),

2.5.2 Null Form Estimates in 2D

In several places in this thesis we use that we have appropriate estimates
for null forms )y and @),. In this section we review the main estimates needed
in the context of well-posedness as well as establish some related ones that we
have not seen in the literature before, but will be needed in our proofs later
(Part of theorem 2.5.6 involving the first iterate and theorem 2.5.8).

Start at the beginning. By the discussion in Section 2.2, if the Picard

iteration is done in H**1¢ where
ue I o AA LA u € AR,
and if () denotes any of the null forms in question, we would like to show
A;lA:”eQ(f}CSH’G,ﬂ{SH’G) e JsHLO (2.19)
Since Ay AL H=HL0 = F9~1+¢ (2.19) is equivalent to showing
Q(FHL0_GEs+10y oy ppsd-ite,
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As mentioned before, in 2D @)y is best behaved out of the null forms we
consider. We have the following optimal result, which can be found in [18] as

a part of the proof of the LWP for Wave Maps.

Theorem 2.5.5. [18] Let n > 2,5 > §. Suppose

then
Q()(g_fs—i-l,@ g_{:s—&-lﬂ) MEN Hs—1,0+e—1

For )5 norms we rely on work of Zhou [33]. Zhou’s proof is done using

spaces N**19 where the norm is given by*
NSH’@(U) = HAflAfiuHLz. (2.20)
We state the result. Note 0 = s + %

Theorem. [33] Consider in R*™! the space time norms (2.20) and functions

@, defined on R**1. The estimates

Ns,s—% (Qaﬂ((zD? Q,D)) 5 Ns—l—l,s-{-% (QD)NS-I—l,s-l—% (1/})

hold for any i <s<

N[

4see [22] Section 3.5 for a comparison with H*¥ spaces.
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Our iteration is done using spaces H**1¢. Inspection of Zhou’s proof
shows that it be could be easily modified to be placed in the context of JH*+1¢
spaces. Zhou’s proof works for i <s< %, but studying of his proof motivated

an alternate proof that works for all values of s > i. The proof is closely
related to the original proof in [33], but on the surface it appears to be less
technical than the original. The reason for this is that we use Theorem 2.3.7
proved in [18], which involves all the technicalities.

Finally, in the proof below we include the enterprise of € as well, and

we make minimal assumptions on the regularity of our functions involved.

Theorem 2.5.6. Let s > }1 and

Z—§<9§s+%—e and 0 <1—c¢
0 <€ < min(2s — 1, 1)
22
Also let
a=ay o a={ G0 20
and
Quo)(r&) = [ [ ot = nmpitr = g = mir miran,
then
1Q(w, v) || so-1ve S (| Dull o || Dol prse

Proof. We would like to establish

Q(j{s—l—iﬂjg_{s—i—i,@) SN I_‘[sﬁ—l—i-e7

25



where we use the notation
we HY it Due H*Y.
Claim, if 7A < 0

Q(u,v) 3 DRI 2 {DY0"¢(D3uD3w) + D0 D2uD2v + D2uDY Do},

and if 7A > 0,
Oluv) < R“f_%{Dl__H_G(DELD%v) + D1_—9—6D11LD%U —I—DIILDI__Q_ED%'U} it |n| < €],
T R 2{DY¢(D2ubDv) + DY D2uDv 4+ D2uDY Do} if €] < |n],

where R+ 2 is the operator defined right before Theorem 2.3.7. To see this
write®

g = 202 202
and for ¢;; use estimate (2.15) for the term with the power 2 — 20 — 2¢ and
(2.14) for the power 20 + 2¢ — 1. For o4 use estimate (2.18) for the term with
the power 2 — 20 — 2¢ and (2.17) for the power 20 + 2¢ — 1. Then the claim
follows. Now, use the product rule, Lemma 2.3.1, for the operator D2 for

TA < 0. Since v and v have the same regularity, by symmetry it is enough to

show
1 i
R9+e—§( E[S,e X E[S+§’0> E[S,O’
1 _ i
RO—i—e 3 ( F[s,29+e 1, E[S+2’0> E[S,O’

1 i
R9+€_§(Hs’9 . Hs+§,29+5—1> s Hs,O’

5This is the idea borrowed directly from Zhou except that we keep 6 general.
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% <20+e—1<06, so we replace 6 by § =20 + ¢ — 1 above, and observe that

it suffices to only show
RIS (HP - H50) s {0,

We apply the product rule again

ROF3(HOB . o3Py o 12 (2.21)
RS (H*P . H3P) s L2, (2.22)
Now (2.21) and (2.22) hold by Theorem 2.3.7. O

Corollary 2.5.7. Let s,60 and € be as in the above theorem, then

1Q(u, v)]

HS,971+€ 5 H’U,‘ j—(s+1,<9“'U| f]-fs«l»l,@.

Next, Zhou shows details for );; and remarks that );; can be handled
similarly. We found a way to estimate ()¢;, and while we do not know if that
is what author had in mind, the result below is very useful for estimates in
Chapter 3. The estimate for @);; follows as a corollary. Note s > 0 suffices

below.

Theorem 2.5.8. Let s > 0 and
1
max(é, 1-s)<f<1,
0<e<1-6,

then

|DuD_o

geo-rve S Nullsgrnoollaesno
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Proof. We would like to show

JAAS (D uD_v) | 2y S

:].Cs+1,9 ||U| g.(:s+1,0 .

By the product rule, Lemma 2.3.1, and using 8 — 1 + ¢ < 0 this follows from

(stronger) estimates

||UU||L2(R2+1) ||u||H00||U| F(s+1,0-1, (2.23)

||UU||L2(R2+1) 5 ||u| Hs:0 |'U||g{1,9—1. (2.24)

Let || - || denote the L?(R*™!) norm, and let

F(r,€) = w(1,§)a(r,€),
G(7,€) = (L + &) wa (1, w7, €)0(7,€).

Using duality the corresponding integral for (2.23) is

// N H(T + X\, &+ n)drdédAdn
Té 1+ [nl)*wy (A, n)w?=" (X, )
// wy (AN, (1, )G\, n)H (T + X\, & +n)drdédAdn
9( &)L+ |n))*wi (A, n)
// 7, )G\ n)H(T + X\, &+ n)drdédAdn
w? (, f)(1+ nl)wl (A, n) ’

H*(T+ X\ €+
< 1PNON] [[ e S ardeanan

dudn 2
<IFMEE [ i | o u=lrl -l

which is bounded by our conditions on s and . The integral for (2.24) is

since 6 <1

N =
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bounded by

// wye (A MTOF (1, )G\, n)H (T + A\, & + n)drdéddn
w? (7, 6) (L + [§])swy (A, n)
// (1, )G\, n)H (T + X\, & + n)drdédNdn
w? (7, ) (1 + [&])swi (A, n) 7

H2 (T+NE+1) }
NN [[ o i e draaniy

H2 (A, ) _
<ieti{ ff <1+1u\>29<1+rs\>23<1+|n—si>29d“dwd”} s

which is also bounded by our conditions on s and 6. ]

N

N|=

Remark 2.5.1. Embedding approach for D, uD_v.
There is an alternate proof one can give for Theorem 2.5.8. We would like to

show

[ASA""(DyuD_v) || 2oy S JJuf

g.CSJrl,SJr% ||,U| g_{:erl,er% .

This is equivalent to showing
Hs,@ . J_Cs+1,6—1 SN Hs,@—l—‘re
which by the product rule for the operator A® in turn follows from

HO,@ . g_{:s—&—lﬂ—l SN HO,9—1+6

)

Hs,9 . J_(:l,@—l SN HO,9—1+6
It is easy to check

j_chrl,Gfl SN HS+1+971,0 and 9_(1,971 SN H@,O’
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so we just need to show
HOO . {5400, foo-T+e
H . OO <y fpoo—1te
which are weaker than
HOO . s+00 12
H . HOO < 12
but those follow from Proposition A.1 in [18] as long as s+6 > 1, which follows
from the conditions we impose on s and 6.
Corollary 2.5.9. Let s > 0 and
max(%, 1—5)<0<1,
0<e<1-6,

then

| DuD_v|

Hs:0—1+¢ S Hu”g.(sﬂ,e ||U||g.cs+1,9.

Corollary 2.5.10. Let s > i and

3 1
Z_§<‘9§S+§_E and 0<1—e¢€
0 < e < min(2 ! 1)
€ < min(2s — —, —
- 2°2
then
1Qus (1, ) et S [llsgesso oo

Proof. Use lemma 2.5.3. Then by theorem 2.5.8 and 2.5.6 the result follows.
O
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2.5.3 Estimates with more regularity.

As one would expect, the further we are from the critical level, the
casier the estimates become. Here we quickly show the simpler proof for Q);;
if s > % Note the same proof can work for a null form defined using o, when

we apply estimate (2.18). We need to show
Qij(:}cs—l—lﬂ’j{s-ﬁ-lﬁ) MEN Hsﬂ—l-‘,—s. (225)
By lemma (2.5.2) and symmetry, this would follow from

DED? (DRG0 DEGsH10) oy frad-tie, (2.26)

D}(DI D21 DI < goo-ite (2.27)

which in turn reduce to showing

e o e 229
HP 3075 L fots0 oy atho-tte, (2:29)

(2.28) is weaker than,
H5+%76 . Hs—‘,—%,e SN HS+%,9‘ (230)

Now, for s > %, by Theorem 2.3.6 H*+39 is an algebra, so (2.28) follows.

(2.29) is a special case of Theorem 2.3.5 witha=s+ 3 anda=60—1+e
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Chapter 3

Space-time Monopole Equation

The objective of this chapter is to establish Main Theorem 1 stated in

the introduction. To that end we give a precise statement of the theorem.
Main Theorem 1. Consider the space-time monopole equation
(ME) FA - *DAgba

with titial data
(A17A27 ¢)|t:0 = (a17a2>¢0)7

then (ME) in a Coulomb gauge is locally well-posed for initial data sufficiently

small in H*(R?) for s > % in the following sense:

e (Local Existence) For all ay,as, ¢g € H*(R?) sufficiently small with
5> }l there exist T' > 0 depending continuously on the norm of the initial

data, and functions

Ay € Cy([0,T], H),r € (0, min(2s, 1 + 5],

A17A27¢ € Cb([()?T]J HS)’

which solve (ME) in a Coulomb Gauge on [0,T] x R? in the sense of

distributions and such that the initial conditions are satisfied.
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e (Uniqueness) If T > 0 and (A, ¢) and (A’,¢') are two solutions in a
Coulomb gauge of (ME) on (0,T) x R? belonging to
Cyo([0,T], H") x (H®)®,r € (0, min(2s,1 + s)]
with the same initial data, then (A, ¢) = (A’,¢') on (0,T) x R2.

e (Continuous Dependence on Initial Data) For any ai,as, ¢ €

H*(R?) there is a neighborhood U of a1, as, ¢y in (H*(R?))? for s > 1

such that the solution map (a,po) — (A, ¢) is continuous from U into

Cy([0, T], H™) x (Cy([0,T], H*))?,r € (0, min(2s, 1 + s)].

Remark 3.0.2. We do not prescribe initial data for Ay, because when A is in
a Coulomb gauge, Ay(t) can be determined at any time by solving an elliptic

equation. See Section 3.3 for more details.

We start by taking a closer look at the equations. Next we discuss
gauge transformations. In 3.3 we rewrite (ME) as a system of wave equations
coupled with an elliptic equation. Section 3.4 is devoted to the proof of Main

Theorem 1.

3.1 Closer look at the Monopole Equation
Given a space-time Monopole Equation
(ME) Fao=%Dao,
the unknowns are a pair (A, ¢). A is a connection one-form given by

A= Aodt + Aldl' + Agdy,
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where

Ay, R* — g

g is the Lie algebra of a Lie group G, which is typically taken to be a matrix
group SU(n) or U(n). We consider G = SU(n), but everything we say here
should generalize to any compact Lie group.

To be more general we could say A is a connection on a principal G-
bundle. Then observe that the G-bundle we deal here with is a trivial bundle
R2t x G.

Next, Higgs field ¢ is a section of a vector bundle associated to the
G-bundle by a representation. We use the adjoint representation. Since we

have a trivial bundle, we just think of ¢ as a map
¢:R* — g,
F is the curvature of A. It is a Lie algebra valued 2-form on R?!

Fo=dA+ANA= (0.Ap — 05Aa + [Aa, Ag)da® A da”.

a<f(
In the physics language, frequently adopted by the mathematicians, A is called
a gauge potential, ¢ a scalar field and F4 is called an electromagnetic field.

D is the covariant derivative associated to A
Dy=d+ A,
and D¢ is given by
Da¢ = dp+ [AN ¢] = Dogpda® = (9t + [An, ¢])dz”
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The space-time monopole equation (ME) is obtained by a dimensional

reduction of the Anti-Self-Dual Yang Mills Equations on R?**2
(ASDYM) FA = —*FA.

Remark 3.1.1. If the curvature of a connection A satisfies (ASDYM), then A
is called an anti-self dual connection. If Fy = xFy, A is called self-dual. It
is worth noting that the equations are called Anti-Self-Dual Yang Mills and

Self-Dual Yang Mills respectively, because if
Fy =4 % Fy,
then Fj, satisfies the Yang Mills equation: D*F = 0 since then
D'F=4+x«xDxF=+xDF =0,
where the last equality follows from the second Bianchi identity.

We now present the details of the derivation of the Monopole Equations

from (ASDYM), which are outlined in [5]. Let
dx? + das — dxj — da]
be a metric on R*»?, then in coordinates (ASDYM) is
Fig=—Fs, Fio=—Fy, Fy=I>F. (3.1)

We show the computation for how to obtain Fj3 = —F5,. The rest follows in

the same way.
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First, recall that if « is a k-form, then *« is the unique (n — k)-form
such that

(xa,w) vol = a A w,
where vol is a volume form, and (-, -) is the inner product on the forms induced
by the R?*2 metric. To compute *Fi3dx; A dxy it suffices to consider
()dzy A dxg,dzy A dxy) vol = dxy A dxg A dxg N dy.
Observe the right hand side is equal to — vol. Since
(dxoy N dxy,dzg N\ dxy) = —1,

we must have

*Flgdl’l VAN d!E3 = Flngg A d(L’4.

Because xF' = —F,

F13:_F24

as needed.
We proceed to the dimensional reduction, where we assume the con-

nection A is independent of x3, and set A3 = ¢. Then (3.1) becomes
Do¢ = Fia, D1¢ = Foz, Da¢ = Fu, (3.2)

where we use index 0 instead of 4. This is exactly (ME) written out in com-
ponents.
There is another way to write (ME), which turns out to be extremely

useful for computations [5]. (ME) is an equation involving two-forms on both
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sides. By taking the parts corresponding to dt A dx and dt A dy, and the parts
corresponding to dz Ady we can obtain the following two equations respectively

dA +[A, A] = «(0i¢ + [Ao, ¢)). (3.4)
Observe that now operators d and * act only with respect to the spatial vari-
ables. Similarly, A now denotes only the spatial part of the the connection,

ie. A= (A, As). Finally note (3.3) is an equation involving one-forms, and

(3.4) involves two-forms.

3.2 Gauge Transformations

(ME) is invariant under gauge transformations. Indeed, if we have a

smooth map ¢, with compact support such that g : R**! — G, and

A— Ay =gAg" +gdg™,

¢ — by =90y,
then a computation shows

Fy— gFag™,

Dad — gDadg™".

Therefore if a pair (A, ¢) solves (ME), so does (A, ¢,).
We would like to discuss regularity of the gauge transformations. If

A€ X, ¢ € Y where X,Y are some Banach spaces, the smoothness and
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compact support assumption on g can be lowered just enough so the gauge
transformation defined above is a continuous map from X back into X, and

from Y back into Y.

First note that since we are mapping into a compact Lie group, we can

o0

2°, and we have

assume g € L

gl = llg™" zzs.-

Next, Main Theorem 1 produces a solution so that ¢ and the spatial
parts of the connection Ay, Ay € Cy(I, H®), and Ay € Cy(I, H"), where r €

(0, min(2s,1 4 s)]. We have the following

Lemma 3.2.1. Let a > 0, then the gauge action is a continuous map from

Cy(I, H*) x Cy(I, H' N H*Y)Y N L® — Cy(I, H)

(3.5)
(h,g) = ghg™" + gdg™",
and the following estimate holds:
gl ey S (1Blley ey + DlIgll- (3.6)

where Y = Cy(I, H' N H*') N L™,

Proof. The continuity of the map is an exercise, which follows from the in-
equalities we obtain when we show (3.6).

Case 0: a = 0. For fixed t we have

g (Ollzz < Ng(OAB g ()22 + lg(t)dg™ (1)l 12

S PO 2llg® Iz + gz ldg™ ()]l 22,
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and (3.6) follows as needed.

Case 1: 0 < a < 1. By the previous case it is enough to consider

1D gy ()22 S 1D (ghg™")(O)lz2 + [ D*(gdg™") (1)l 2 (3.7)

For the first term we have

1D%(ghg™Dllzz S (D g)hlIzllglz + IRD* g Iz llgl o + (1]l go g1l Zee

where for the ease of notation we eliminate writing of the variable ¢. The
third term is bounded by the right-hand side of (3.6). ¢ and g~' have the
same regularity, so we only look at the first term. By Holder’s inequality and

Sobolev embedding

1D%ghllzs < 1D%gll 2rallbll paje-arn-2 S 1D D%l 2| e, (3.8)

1

where we use that $ = 1 — 152 Finally for the last term in (3.7) we have

lgdg ™Iz S N(D%g)dg™" 112 + [lg]l o 9] e, (3.9)

and we are done if we observe that the first term can be handled exactly as
(3.8).

Case 2: a = 1. Again we start with
[ Dhgiy (O)llz2 < (1D (ghg™ ") (0)]lz2 + 1 D(gdg™") ()] 2 (3.10)
S N(Dg)lellgllzee + Rl Mgl + 1D(gdg™)l| 22

The second term is bounded by the right-hand side of (3.6). For the first term
we have

1(Dg)hllzz < 1Dgll el Al s

39



To finish observe

ldgllzs < [ldgliz2 + [ldgll 4

for 0 < 6 < 1 so in particular for § = %, so we can use Hz — L4, By the

same reasoning, for the third term in (3.10) we have

ID(gdg™")llzz < (Idgllzz + lldgll gr2)* + llgll 2 llgll e

Case 3: a > 1. There is nothing to prove since now h,dg € L*>°. Hence

1D*(ghg ") ®)llz2 S 1D"g@®)ll2 k< llglz + [[Allae g1 Ze

and
D% ()22 < g g2 + gD grra-

Similarly

1D%(gdg™)(®)ll2 < 1D (gdg™)(B)l] e
S ID%g(O)calldg™ Nz + llgllspreallgll o

S (gl + Ng@ o) lldgllze + gllgrvallgllzee

From the lemma, we trivially obtain the following corollary.

Corollary 3.2.2. Let 0 < 7,5, X = Cy(I, H") x Cy(I, H*) x Cy(I, H®) and

Y = Cy(I, H' N Hst' N H™+1) N L™, Then the gauge action is a continuous
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map from

XxY—=X
(3.11)
(AOa A17A2) = Ag7
as well as from
Cy(I, H®) X Y — Cy(1, H?)
(3.12)
¢ g = gog ',
and the following estimates hold
14 1lx < Nlgll-(1 + 1] x), (3.13)
and
pglleymsy < N9l (L + ol ). (3.14)

Since we have gauge freedom, we are allowed to choose any representa-

tive of a given equivalence class. The traditional gauge conditions are
e Coulomb: 0'A4; =0,
e Lorentz: 0“A, =0,

e Temporal: Ay = 0.

In this thesis we work in the Coulomb gauge. Using Hodge theory the Coulomb

gauge could be also written as

d"A=0.
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We ask: given any initial data ay, as, ¢y € H*(R?), can we find a gauge transfor-
mation so that the initial data is placed in the Coulomb gauge? Dell’ Antonio
and Zwanziger produce a global H' Coulomb gauge using variational methods
[6]. Here, we also require g € H**!' and two dimensions are tricky. For-
tunately, if the initial data is small, we can obtain a global gauge with the
additional regularity as needed. This is considered by the author and Uhlen-
beck for two dimensions and higher in [3]. The result in two dimensions is the

following

Theorem 3.2.3. [3] Given A(0) = a sufficiently small in H*(R?) x H*(R?),
there exists a gauge transformation g € H**'(R?) N H'(R?) N L™ so that

& (gaig™" +gdig™") = 0.
3.3 The Monopole Equation in a Coulomb Gauge as a

system of Wave & Elliptic Equations

We begin with a proposition, where we show how we can rewrite the
monopole equation in the Coulomb gauge as a system of wave equations cou-
pled with an elliptic equation, to which from now on we refer to as the auxiliary

monopole equation (aME).

Proposition 3.3.1. The Monopole Equation, Fy = *Ds¢ on R?>™! in a

Coulomb gauge with initial data

Ai|t:0 = Qy, 1= 1, 2 and ¢’t:0 = Qb() (315)
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with d'a; = 0 can be rewritten as the following system
AAAO = d*[A(b *df] +d” [df7 ¢]7

(aME) Ou = B (¢, df, Ay),
L = 'B*((b’ df7 A0)7

where B
34_ :_Bl+82+33+347
B_=—By —By+ Bz — By,
where
B1 = [alf7 an],
BQ == Rl [ana (b] - R2[81f7 (b]u
(3.16)
B3 = [A(b ¢]7
By = R;j[Ao, & f],

with R; denoting Riesz transform, (—A)_%aj. The initial data for (aME) is

given by
u(0) = v(0) =0,
0u(0) = ¢y + h, (3.17)
Ow(0) = ¢o — h,

where h = Rias — Raay.

Proof. Recall equations (3.3) and (3.4)

dA + [A, A] = x(0y0 + [Ao, ¢]), (3.19)

43



where d and * act only with respect to the spatial variables, and A denotes only

the spatial part of the connection. If we impose the Coulomb gauge condition,

then
d*A=0.

(3.20)

By equivalence of closed and exact forms on R", we can further suppose that

A = xdf,
for some f: R?>™ — g. Observe

dxdf = Afdx Ndy

e, ] = [df, df] = 5[0uf, 0 flda’ A o
It follows (3.18) and (3.19) become
Oy x df + [Ag, xdf] — dAg = xdo — [df, ¢],
A+ 101f, 8] = +(06 + [Ao,0)).
Take d* of (3.22) to obtain
NAy = d*[Ag, *df| + d*[df, ¢].
This is the first equation in (aME). Now take d of (3.22)
T + (A, 03] = D)+ Bul0n £, 6] — Dh[0af, 0]

Consider (3.24) and (3.23) on the spatial Fourier transform side

—

—OEPT + €26 = i(&lDnf, 8] — &1[0of, 8] — & Ao, D7 £])
—|E[2f — O = —[01f, Oaf] + [Ao, ).
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This allows us to write (3.25) and (3.26) as a system for ¢ and df

(0 = ilEN(@ + il¢]f) = =B (8, df, Ao), (3.27)
(0 +il]) (6 — ilé] f) = —B_(, df, Ag), (3.28)

where
B = ~[017.0:1) + (Ao, 6] & (5(0:5.0) — 2001+ A0 f)). (320

Indeed, multiply (3.25) by %, and first add the resulting equation to (3.26) to
obtain (3.27), and then subtract it from (3.26) to obtain (3.28). To uncover

the wave equation, we let
o+il¢lf = (B +ilgha and ¢ —ilé]f = (9 —il¢])d, (3.30)

where u,v : R*!' — g. u and v are our new unknowns. Note, once we know

what u and v are, we can determine ¢ and df using

. (0 +il€])a + (8, — il€])D
= 2 )

17 = O 8D~ @~ kb0

(3.31)

So given i|¢|f = h for some h, we get A = xdf = *R;hdz’. In addition, since
¢ and df can be written in terms of derivatives of v and v we sometimes write
B (o, df, Ay) as BL(0u, v, Ay).
Now we discuss initial data. From (3.30)
0ri(0) = o + il€] £(0) — il¢a(0), (3.32)
and

0:0(0) = ¢y — i[€| £(0) + i[¢]6(0). (3.33)
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Note, we are free to choose the initial data for v and v as long as in the end we
can recover initial data for ¢ and A. Hence we can just let u(0) = v(0) = 0.
We still need to say what |¢]f(0) is. Let h = i|¢|f(0). Then by (3.15) and
(3.21) we need

th = Q2

RQh = —aj.
Differentiate the first equation with respect to x, the second with respect to

y, and add them together to obtain
AD_lh = 810,2 - 62a1, (334)

as promised. O

Next we have an important result that states that LWP for (ME) in
a Coulomb gauge can be obtained from LWP of the system (aME). For com-
pleteness we state exactly what we mean by LWP of (aME).

Let r € (0,min(2s,1 + s)], s > 0. Consider the system (aME) with

initial data

(uaut>|t:0 = (UO,U1) and (U,Ut)|t:0 = (7107@1)

in 5t x H*, then (aME) is LWP if
(Local Existence) There exist 7" > 0 depending continuously on the norm

of the initial data, and functions
AO S Cb([oaT]a HT))

u,v € HE s Cy([0, T), H*Y) N CL([0, T), H?),
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which solve (aME) on [0,7] x R? in the sense of distributions and such that
the initial conditions are satisfied.

(Uniqueness) If T > 0 and (Ag,u,v) and (Af,u',v") are two solutions of

(aME) on (0,T) x R? belonging to
Co([0,T], H") x 3G x 3657,

with the same initial data, then (Ag,u,v) = (A}, «/,v’) on (0,T) x R2
(Continuous Dependence on Initial Data) For any (ug,u), (vg,v1) €
H**! x H* there is a neighborhood U of the initial data such that the solution
map (ug, u1), (vo, v1) — (Ag,u,v) is continuous from U into Cy([0,T], H") x
(Co([0,T], H*1) N Gy ([0, T, H?))2.

In fact by the results in [24] combined with estimates for the elliptic
equation, we can show these stronger estimates

HU—U/Hg{;ﬂﬁ + |lv — v,"f}{;+1’6 + 140 = Al ey 0.7, 5
(3.35)

S luo — ugll o+t + [Jur — will s + |lvo — vl gsr + |lor — v1|ms,

where (ug, u}), (v),v]) are sufficiently close to (ug,u1), (vo, v1).

Theorem 3.3.2. (Return to the Monopole Equation) Consider (ME) in

a Coulomb gauge with the following initial data in H® for s > 0
Az‘|t:0 = a;, Z = 1, 2 and qb|t:0 = ¢0 (336)

with d’a; = 0. Then local well-posedness of (aME) with initial data as in
(3.17) implies local well-posedness of (ME) in a Coulomb gauge with initial
data given by (3.36).
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Proof. Begin by observing that given initial data in the Coulomb gauge, the
solutions of (aME) imply A remains in a Coulomb gauge. Indeed, solutions
of (aME) produce z|§|f — I for some h, so we get A = *df = *R;hdz?, and
d*A = d* xdf =0 as needed.

(Local Existence) From (3.31) we have

¢ = 5 : 3.37
3.3
(O +iD)u — (0 — iD)v
Hence
u,v € 9‘@“’6
implies

¢, A =xdf € H'
as needed. Next we verify that solutions of (aME) produce the solutions to
the Monopole Equation in the Coulomb gauge. The starting point for the
monopole equation in the Coulomb gauge are equations (3.22) and (3.23).
Suppose (A, ¢) solve (3.27) and (3.28). Add (3.27) to (3.28) to recover (3.26),
which is equivalent to (3.23).
Next given (aME) we need to show (3.22) holds. Write (3.22) in coor-
dinates,
Oz Ao — Oy + 0.0, f = [0uf, 0] — [Ao, 0y f], (3.38)
Dy Ao + 026 — D, f = [0,f, 8] + [Ao, Do f]. (3.39)

From the elliptic equation in (aME) we have

Ao = A_1<_81[A07 ayf] + ay[Am amf] + am[axf7 ¢] + ay[ayfa ¢]) (3-40)
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Also subtract (3.27) from (3.28) and take D on both sides to obtain (3.24),

which implies
¢ - atf = A_l(ai [A07 azf] - ay [axfa ¢] + ar[ayfv ¢]) (341)

In order to recover (3.38), first use (3.40) to get 0, A

0y Ag = ATH=07[A0, 9, f] + 0,0, Ao, O, f]

(3.42)
+ 0310, f, ¢ + 0.0,[0, f, ¢]).-
Next use (3.41) to get dy(¢ — O,.f):
0y(6 — O, f) = £7H9,0%[Ao, Do f] + D[ Ao, D, ]
(3.43)

— 010uf, 0]+ 0,00, f, 9]),
and subtract it from (3.42) to get (3.38) as needed. We recover (3.39) in the

exactly same way.

(Continuous Dependence on Initial Data) We would like to show
e
e+ l[¢o — &

for any a, al, ¢f, sufficiently close to ay, as, ¢o. In view of LWP for (aME) with

140 — Aol e, o7,y T 1AL — Al

s+ 1Ay — A3

s,0
HT

(3.44)

HS

S |lay — @l zs + ||az — dj)]

data given by
u(0) = v(0) = 0,0,u(0) = ¢g + h, 0,w(0) = ¢pg — h, (3.45)

where h = Ryas — Rsaq, and by (3.35) we have

||U—Ul| ﬂ-C;j'l’G + ||U — U/| ﬂ'f;j—l’e + ||A0 — AE)HC()([O,T},HT)

(3.46)
S Nl

Hs+1 + ||¢0 - h - UH

e+ [[go + h = ui || s + [|vp]

Hs,
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for all wy, vy, u), v} satisfying

g1+ ||¢o + h — u

g1+ ||¢o — h — V)|

g e+ ||Vl g <0 (347)

for some 6 > 0. In particular choose
uy = vy = 0,
(3.48)
uy =¢y+h and v =¢5—h

where b/ = Rja), — Rya}, and such that

o +h — ¢y — 1|

He + |0 — h — ¢y + 1|
< lldo — o4
< |0 — &g

<.

Hs

me + ||Ri(ag — ay)|

ms + || Ra(ar — ay)|

Hs

e+ [lar = ail| g + [laz — a5 -

Then by (3.46), (3.47), and (3.48), || Ao — Ap|| ¢, (jo.77, 7+ 15 bounded by the right
hand side of (3.44). Next observe

[Ar — Ajl

HO S ||R2(0: +iD)(u — )|

12 + || R2(0y —iD) (v — ")

5,0
HT

5 ||U — U/H:H;j-l,e + ||U — ’U/| &C}H’G'

So again by (3.46), (3.47), and (3.48) ||A; — A}|

O is bounded by the right
hand side of (3.44). We bound the difference for A, and ¢ in a similar fashion.
(Uniqueness) By LWP of (aME), Ay is unique in the required class. We
need to show A and ¢ are unique in H;’e. However, this is obvious in view of

(3.44). u
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3.4 Proof of Main Theorem 1

By Theorem 3.3.2 it is enough to show LWP for (aME). We start by

explaining how we are going to perform our iteration.

3.4.1 Set up of the Iteration

Equations (aME) are written for functions u and v. Nevertheless, func-
tions u and v are only our auxiliary functions, and we are really interested in
solving for df and ¢. In addition, the nonlinearities By are a linear combi-
nation of B;’s, i = 1,2, 3,4 given by (3.16), and B;’s are written in terms of
¢,df and Agy. Also, when we do our estimates, it is easier to keep the B;’s in
terms of ¢ and df with the exception of By, which we rewrite in terms of Ju
and Ov'. These comments motivate the following procedure for our iteration.
Start with ¢_1 = df.; = 0. Then BL = 0. Solve the homogeneous wave
equations for wug, vy with the initial data given by (3.17). Then to solve for
dfo, o, use (3.37)

(0 +iD)u + (0 — iD)v

- 2 ’ (3.49)
o.f — Ri((ﬁt + ZD)U,; (0 — iD)v).

Then feed ¢y and df, into the elliptic equation,

AAO’Q = d*([AO,(), *dfo] =+ [dfo, d)o]), (350)

and solve for Agy. Next we take dfy, o, Ago and plug them into By, Bs, Bu,
but rewrite By in terms of Jug, Ovg. We continue in this manner, so at the j'th

1See Section 3.4.4 for the details.
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step of the iteration, 7 > 1, we solve

Cuj = =B1(V fj—1) + Ba(duj—1,0vj-1) + B3(Ao,j—1, ¢j—1) + Ba(Ao,j—1, V fj-1),
vj = —=B1(Vfj—1) — Ba(Ouj—1,0vj—1) + Bs(Ao,j—1,Pj—1) — Ba(Aoj—1, Vfi-1),
ANAgj = d*([Aoy, *df;] + [df;, ¢;]).

3.4.2 Estimates Needed

The elliptic equation is discussed in section 3.5. By results in [24]
which are mentioned in Section 2.2, the proof of Main Theorem 1 reduces to
establishing following estimates for the nonlinearities By and combining them

with appropriate elliptic estimates from section 3.5

||A;1A:1+€Bi(8u, 81}, A0)||g_cs+1,9 5 ||u||}(s+1,9 + ||U||g{s+1,9, (351)
||A;1A:1+€(fBi(8u, Ov, Ag)—BL(0u', 00, Ag)) || g¢s+1.0

5 ||u — u'||g{s+1,9 + ||U — U/||}Cs+1,9, (352)

where the suppressed constants depend continuously on the H**1¢ norms of

u,u',v,v". Since B are bilinear, (3.52) can follow from (3.51). Moreover,

since we require small initial data?, we do not need € in our estimates. Next

observe Ay A_J*H1Y = H%9~1 as well as that

ldf =0, |0l o0 < N[llaerro + ([0]laere.

2See Theorem 3.2.3 and Section 3.5.
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Therefore, by (3.16), it will be enough to prove the following

1Bl zso-r = [[01f, O f]llso-1 S IV flIFyeo (3.53)
1Ball =01 S Mef, Al gz o1 S Mlf | zzs0 19 2750 (3.54)
1Bsll =01 S | Aol zzs0-1 S ([ Aoll[6l] 0 (3.55)
[Ballrrso-1 S 1 Aodf Nl rrs0-1 S 1 Aolllldf [l 2750, (3.56)

where the norm we are using for Ag is immaterial, mainly because we show in

Section 3.5,

[Aoll S ldf =0l @l 150 (3.57)

Few remarks are in order. Estimate (3.53) corresponds to estimates for the
null form @;; (this is shown in the next section). Estimate (3.54) gives rise to
a new null form @ that we discuss in the next section. Ay in estimates (3.55)
and (3.56) solves the elliptic equation in (aME), which results in a quite good
regularity for Ay. As a result, we do not have to look for any special structures
to make estimates (3.55) and (3.56) hold, so we can drop the brackets, and also
treat these estimates as equivalent since ¢ and df exhibit the same regularity.
Finally, Riesz transforms are clearly bounded on L?, so we ignore them in the
estimates needed in (3.54) and (3.56). The estimates (3.53) and (3.54) for the
null forms are the most interesting. Hence we discuss them first, and then we

consider the elliptic terms.

53



3.4.3 Null Forms—Proof of Estimate (3.53)

[01f, 02 f] has a structure of a null form Q;; :

[a1f, Ebf] = 81f82f - a2falf = QlQ(f? f)

It follows (3.53) is equivalent to

1Q12(f, f)]

a1 S IV S

IV /]

Hs.0
From (3.49) we have
Vfe Y = A A Df||2ge) < 00,

so the estimate follows from Corollary 2.5.7.

3.4.4 Null Forms—Proof of Estimate (3.54)

We need
Idf, @]l o1 S Il df |

¢l

Hs.0 Hs:0 .

Hs.0.

(3.58)

However analysis of the first iterate shows that for this estimate to hold we

need s > %, so we need to work a little bit harder, and use (3.37)3

[0:f, @] = %l[Ri((?tu +iDu — 0w + 1Dv), Oyu + iDu + 0w — 1 D)

1
4

[(Rzat + 81)’& — (Rzat — 801), (8t + ZD)U + (8,5 — lD)’U]

(3.59)

If we use the bilinearity of the bracket, we can group (3.59) by terms involving

brackets of u with itself, v with itself, and then also by the terms that are

3The obvious way is to just substitute for ¢ and leave df the same, but it is an exercise

to see that this does not work (for several reasons!).
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mixed i.e., involve both v and v. So we have

4[81‘](, ¢] = [(R,@t + 8l)u, (3t + ZD)U] - [(Rﬁt - 81-)1), (6t - ZD)U]

Since u and v are matrix valued and do not commute we need to combine the
last two brackets. This gives (3.62) and (3.63) below. Observe that the plus
signs in those formulas are not typos.

The needed estimates are contained in the following theorem, which we

state involving the e.

Theorem 3.4.1. Let s > %1 and

3 € 1
sz < Z _
1 2<«9_S—|—2 e and O0<1—¢
0 < e < min(2s — =, 5
< e <min(2s — o, 7).
and let Q(¢,¥) be given by
Qp, ¥) = (R0 £ 0;)p(0y £ iD)Yp — (0 £ iD)p(R;0; + 9;)¥ (3.60)

= (8, £ iD)R;p(8, + iD) — (8, £ iD)p(8; £ iD)Rap  (3.61)
or

Q1) = (R0 £ 0:)p(0 F 1D) + (0, £ iD)p(R:0, F 0;)1) (3.62)

= (0r £iD)Rip(0y F 1D)Y + (9, £iD)p(0; F 1D)R;). (3.63)

Then
Q(J‘CS+1’6,}CS+1’G) SN Hs,@—l—l—e (364)
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or equivalently, the following estimate holds

1Q(e, )]

meo-1te S [[@llaerollillseo.

Proof. We show the details only for

Qp, V) = (R0 + 0i)p(0y — iD)Y + (0 +iD)p( R0y — ;)1

as the rest follows similarly.

Observe the symbol of @) is

A(r €N m) = (é—] = )+ DO~ ).

Suppose 7A > 0, then

020+ DO bl < {

17|+ ISIHIA! —nl| if mA>0,
IT| = 1&l||In] +[Al| if 7,A<0.

It follows

%Is,ﬁ—l+e + HD7UD+'U’

2
Hs,6—1+€

/ / AP AP 4Q(u, v)[Pdrde < || DyuD)
TA>0

and the estimate follows by Theorem 2.5.8.

Suppose 7A < 0. If we break down the computations into two regions
{(m,8),(\,n) 7| > 2] or |\ >2|n]} and otherwise, (3.65)

then in the first region, we bound ¢ by

g < 2(|7[ + €N A + [n])
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since there we do not need any special structure?.

In the second region, we have

4\€H77||E+ —\ =4do_

and the estimate follows then by theorem 2.5.6.

Remark 3.4.1. The symbols for which we did not show details are

(S Iy e+ .

€l Inl

&i Uz
(E - m)(T — &N = [nl),
gl 'L

From above we could extract another null form and show the following

Theorem 3.4.2. Let s > }1 and

—¢ and 0<1—c¢

and let Q(¢,¥) be given by

when 7\ > 0 and

Q(p, V) = 0tR;p(0r +iD)p + (0 + iD) 0y Rith.

41t is a simple exercise in the first region. See Appendix B.
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when 7A < 0.
Then
Q(j_chrl,G’j_Cerl,H) s HS,0*1+€. (368)

Proof. When 7\ > 0, the symbol of () can be written as a sum of

A (é—| - I%I) (3.69)

and

&i i
= — \|€]—. )
7[n| €] €] i (3.70)

We compare (3.69) with the symbol of @Q;; for the first iterate

&i i
€l <@ - W) : (3.71)

If we break down the computations into two regions
[(n€), (m) : 7] > 206l A > 2f} and otherwise,  (3.72)

then in the first region, again we do not need any special structure, and in the
second, we just bound 7A by |£||n| and use Theorem 2.5.6.

Next we discuss (3.70). We add and subtract terms to rewrite it as
something we recognize. We consider different signs of 7 and A. For instance,

when 7, A > 0 we have

&‘ 55 77¢>
= — A A = - — 3.73
& rlal = All) + Al (|§| d (3.73)

The term on the right can be taken care of in the same way as (3.69). For the

term on the left we subtract and add 7. This results in

%(T|77| — A+ TA = ML) < 7| = Il |+ (A7) = [l (3.74)
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The estimates follow from theorem 2.5.8. When 7, A < 0 can be handled in a

similar way. n

3.4.5 Elliptic Piece: Proof of Estimate (3.55)
Recall we wish to show
lAgwllreo—s S Aol oo (3.75)

We need this estimates during out iteration, so we really mean A ;, but for
simplicity we omit writing of the index j. Now we choose a norm for Ay to be

anything that makes (3.75) possible to establish. This results in

[ Aol = HAOHLngc + HDSA0|’L§’L§>

where
~ 1
p€(1_287§)a
2 1 1 s. 1 (3.76)
-=1——, max(-(1—2s),-) < - <s.
oo max(3(-20.0) <

For now we assume we can show Ay € L” LN Ly Wj’q and delay the proof to
section 3.5, where the reasons for our choices of p, p, ¢ should become clear.
We start by using § — 1 < 0

HAow||Hs,9—1 S ”As(Aow)HLz(R2+1) 5 HA0w|lL2(R2+1) + HDS(AOUJ)”LQ(R2+1)

< l’(DSAo)wHLz(RzH) + ||A0D8w||L2(R2+1) + HAow||L2(R2+1) .

-~ -~

I 7
(3.77)
We discuss I. By Holder’s inequality applied twice
1< 1D Allzu ol < Aol (3.78)
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with ]13 - z% = % = % + % where p, ¢ are as in(3.76). Then Klainerman-Selberg

Theorem applies® and gives

1< Al p

N[

From (3.76) we also have

IS Aollllwll iozo16 S [[Aolllwll e
H q P
To I we also apply Holder’s inequality
11 < [ Aoll g (ol + D%l 1) S HAGlIA%0 ],
where 115 + z% = 1. Then by Lemma 2.3.4 we have
1T S AollIAwl] o S ([ Aollfew]] s
t x

(3.75) follows now from (3.80) and (3.82).

3.5 Elliptic Regularity: Estimates for A.

(3.79)

(3.80)

(3.81)

(3.82)

Here we present a variety of a priori estimates for the nondynamical

variable Ag. At each point we could add the index j to Ay, df and ¢. Therefore

the presentation also applies to the iterates Ay ;. It is an exercise to show that

the estimates we obtain here are enough to solve for Ay ; at each step as well

as to close the iteration for Ag.
Let Ap solve
NAy = d*[Ag, xdf| + d*[df, ¢].

5See the discussion following Theorem 3.5.3 in 3.5 for more details.
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Hence there is a wide range of estimates Ag satisfies. Nevertheless, the two
spatial dimensions limit our “range of motion”. For example, it does not seem
possible to place Ag(t) in L?. We add that the proofs of both of the following
theorems were originally inspired by Selberg’s proof of his estimate (45) in

[23]. We start with the homogeneous estimates.

Theorem 3.5.1. Let s > 0, and let 0 < a < s+ 1 be given. Suppose

1<p<ooand 1< q< oo satisfy

1 1 1 1 1
max (5(1 + 2a — 4s), 5(1 +a —4s), §min(a, 1)> < p < —;a’ (3.83)
2 1 1 1 2 2
l-—4a—-2s<-<-(1—--) and —-<1——-+a  (3.84)
q p 2 q p q

i) If 0 < a <1 and the H*Y norm of df is sufficiently small, then A, €

LPWa4 and we have the following estimate

| Aollprves < 116 0. (3.85)

|df |

HS,H

i) If 1l <a<s+1and Aj € Lng/q_l/Q)il, then A, € LfW;”q and we have

the following estimate

#0) | df |

1 ollgiies S (1ol yyasa vt + 1] wo (3.86)

Proof. Let a = 0. Then we have
[ Aol pr s = |ATH(d* [Ao, #df] + d*[df, ¢))[| o1
S HDil(Aodf)HLng + HDil(df@ﬁ)HLg’Lg (3.87)

5 HAOdeLfL; + ”D71<df¢)HLfLZ.7
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where we use the Sobolev embedding with % = % — % The second term is

handled by the Klainerman-Tataru Theorem [19] (see Appendix A for details),

which gives

ID=H(df )l npra < Ndf ool Pl s (3.88)
For the first term we have by Holder’s inequality
[ Aodf |2y < 1 Aollzralldf (| erz.- (3.89)
Combine (3.88) and (3.89) to get
[ Aol[zrza < Aol alldf | so + Nl df | rsol[@]| oo (3.90)

So if the H*Y norm of df is sufficiently small, we obtain

[Aollzpry < [l9]

|df |

Hs,0 Hs:0, (391)

as needed.

Now let 0 < a < 1. Then beginning as for a = 0
1ol pyires = < 1D~ (Aodf)ll pvires + 1D (df &) ppyires

SID ™ Aod) |z s + 1D (df )| rs (3.92)
1 1 1-—a

< A d Dry Da_l d pra _ = - —
S WMotz + 1D @ Duzs, o= =

The latter term is again bounded using the Klainerman-Tataru theorem. For

L_ 1, 1l-a_ (1 _ay, 1
the former we use £ = - + 5 = (; — §) + 3.

[Aodf |z Ly < 1Aoll 1p 1y g ajoy-1 1l ez < [N Aoll povpaalldf[[mse. (3.93)

Then again if the H*Y norm of df is sufficiently small, we obtain

[ Aol[ pyiea S [ldf|

|1l 7.0 (3.94)

Hs,0
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as needed.
Now, let a = 1. Then
ol pirse S 1D (Aol s + 10710 s
= [|Aodf|Lrrs + [|df Sl o s
< Vollpi I lszoss + 1 N zrszolBlzrszn, =

S Aol poyirpalldf|

| =
N —

oo+ ||df || 2o 20 ||l 20 20
(3.95)

The estimate follows from H*? — H'" % %¢ < L1249, where the first em-
bedding holds by the left hand side of (3.84), and the last by Theorem D [18§]
(See Appendix A).

Now, let 1 <a < s+ 1. Then

[ Aol prvirea S ND™H(Aodf) | oy + 11D (df &) || ppyipes

(3.96)
S D (Aodf )| zrre + 1D (df &) 1p 1
For the first term we have
1D (Aod)lzgis < 1D Aoll v+ e
+ IIAoHLng/q—I/zrl I D" df || o2
S NP Aollprglldfllso + 1 Aoll p para-r/m=1lldf |so.
(3.97)

For the second term we have
1D df o)l prs S 1D df (| por por |0l pr2 oz + N1df |22 pa2 [[ D7 @l o g,

1 1 1 1 1 1

- =—+4+— and -=—+4 —,

b P1 D2 q q1 q2
(3.98)

and since df and ¢ have the same regularity, it is enough to just show we can

control ||D“_1detho1qucl [l r2 2. Now if p and g satisfy (3.83) and (3.84), it
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can be checked (see Appendix A) that we can find ¢; and ¢ so that Theorem
D in [18] again applies, and therefore gives us
1D df | s pan 0l gz S Mldlf a-2rm-1/mysa-r0[| Q1] 1210217020

S Ndfllz=o il

(3.99)

Hs,0 Hs,0

O

Remark 3.5.1. In every place where we use the Klainerman-Tataru theorem
we could use the Sobolev embedding, and then Klainerman-Selberg theorem.

However, then the range of p and ¢ would be much more restricted.

Corollary 3.5.2. In particular, if s > 0, we have Ay € Cy({ : Hg) where

2s if 0<s<1
0<a< )
14+s if 1<s

Proof. Suppose 0 < s < % Then use part i) of the theorem with ¢ = 2 and
p = oo to obtain Ay € L°H® for a < 2s. So we just need to show A is
continuous as a function of time, but that easily follows from a contraction
argument in Cy(1 : H®) using Ly° H® estimates.

Suppose % < s < 1. Start with s = % If @ < 1, the statement follows

again from part i) of the theorem, so consider a = 2s = 1. Then
[ Aol oo prr S 1 Aodf [ rgerz + |df @l peor2
S Aol geralldf | oo s + Ndf [l g rall Dl oo s (3.100)

S HAOHL?OH% deHHlf%,o + deHHlf%,GHgb”Hlf%,Ga

where we use Sobolev embedding and Theorem D. Since 3 < 1, 4y € L¥H>

Now let % <s<l1 Aye Lf"H @ for a <1 follows by the previous arguments.
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So let 1 < a < min 2s.
Aol poe pre S 1D (Aodf )| ez + D (df )| e 2

SID* ™ Ao)df (| ngerz + 1A D™ df || Lo 2 + [ D (df ) | e 2
(3.101)

To the last term we apply Leibniz rule and use Theorem D (see Appendix A).
For the first term we have

1D Ag)dfller S 1D Aal gzl p 5

S 1D SAoHL;OLngf\

which is bounded by part i) of the Theorem since 0 < a — s < 1. For the

(3.102)

Hs:9,

second term we have

[ A0 D* " df | gerz < [l Aol 51 1D df |

g Y P o

which is bounded since 0 < s <landa—s<s < 1.

LoL(3- LooL<% 591

(3.103)

Now let s = 1. If a < 2, the statement follows again from part i) of the
theorem and previous arguments, so consider a = 2. Then
[ Aol oo prz S 1D (Aodf)Lgerz + | D(df )| pee 2

S (D Aodf || ooz + || Ao Ddf || oo 2 + [|D*(df )| Lo 2.
The last term again is bounded by Theorem D. For the first term we pick

(3.104)

0 < a < 1 to obtain

I(DA)df lrzerz S N1DANl (1521l f” g
L (3.105)
12 aA0||Lg°L§||df|

which is bounded by previous arguments since 0 < 2 — a < 2. For the second

Hs:9,

term, by Corollary 3.5.4
[ Ao Ddf || g2 S [ Aollzge, | Daf ]

)71

o] (§7
i (3.106)
S ”AOHL?IdeHHle
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Suppose s > 1. If a < 2, the statement follows again from part i) of
the theorem and previous arguments, so consider 2 < a < s+ 1.

140l e gre S 1D (Aodf) | ez + 1D (df )| e 12
S MDD Ao)df || e 2 | A0 D df (| oo 2 + l|df (| o0l 750
SID Aol g2 df I ngs, + 140l g 1D df | oo £z + ldf | zso | 0] 1150
S Aol poe ra-rlldf | zge, + 1 Aol ge, lldf ([ grso + lldf Nl prs.ol| Dl rsee

,T

(3.107)
where we use that df, ¢ € LZ‘;@ Now if a — 1 < 2, then we already have
established Ay(t) € H®, and we are done. If @ — 1 > 2, then we estimate
[ Ao|[ o« a1 and "backtrack“ till we have needed regularity for Ag. This com-

pletes the proof of the corollary. ]

So far we just need s > 0 in order to make the estimates work. The
requirement for s > i does not come in till we start looking at the nonhomo-
geneous spaces, where also the range of p and ¢ is smaller. However, we can

distinguish two cases aq < 2 and aq > 2.

Theorem 3.5.3. Let s > 0, and suppose the H* norm of df is sufficiently

small.

i) If ag < 2 for 0 < a < (2s,1) and if p and ¢ satisfy

1 a 1 1
S ta—2s,2) <<= 1
max (2+a s,2> <q <3 (3.108)
2 1 1 1
l——4a—-2s<-< - ——, (3.109)
q p 2 q

%We can do the proof directly or use that |[D* 'u|[ o2 < [|u|s.0 and use that H*? is
now an algebra(see [18] Thm 7.3).
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then Ay € LYW and we have the following estimate

\dF || 70 (3.110)

[ Aol pwes S N9l res

ii) If ag > 2, then we need s > ;11 and 0 < a < min(4s—1,1+s,2s). Suppose

p and ¢ also satisfy

s 1 11
max <a > ° S+a- 23> <o < gmin(a 1), (3.111)
2 1 1 1
1-Z4a-2s<-<>—-, (3.112)
q p 2 q

then Ay € LYW and we have the following estimate

HAOHLfWﬁ’q S ||¢|

|df |

Hob- (3.113)

Hs,0

Proof. Let ag < 2 for 0 < a < min(2s,1). We need Ay, D*Ag € LY L%, but this
follows from Theorem 3.5.1 when we use part i) twice: first for Ay and then
for D*A, with the same values of p and ¢.”

Now let ag > 2 and s > }L and 0 < a < 4s — 1. Here, Theorem 3.5.1

does not apply anymore, so we return to estimating Ay directly.
[ Aoll Lpwaa = | AT (d"[Ao, df] + d*[df, o)) rwee
S ID ™ (Aodf)lrwea + 1D (df ) Ly
SID™H (Aodf )zpra + 1D (df &)l e

D" (Aodf ) prs + 11D (df d) | Lr s

(3.114)

"The conditions for p and ¢ in (3.108) and (3.109) are obtained by making sure (3.83)
and (3.84) hold for both @ = 0 and ¢ > 0. This results in new conditions for a so (3.108)
can hold.
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The first term is handled in the same way as in the proof of Theorem 3.5.1 part
i) with @ = 0. Klainerman-Tataru theorem takes care of the second term. The
last term is handled by Klainerman-Tataru theorem for a < 1, and for a > 1
in the same way as it was in the proof of Theorem 3.5.1 part iii). So we just
need to consider the third term, where we look at three cases: 0 < a < s < 1,
s <a<min(4s—1,14s5,2s) <1, and 1 < a < min(4s — 1,1 + s,2s). Let

0<a<s<1,then

ae 1 1 1-a
1D~ (Aodf) | crrs < I1A0df [l ipry —=--
q T 2
. 11 1
< [[Aollzpra I D df | Lo r2, Ty + (5 - 5)
S Aol zpwzalldf (|50
For s <a < min(4s — 1,1+ s,2s) < 1 we have
ae 1 1 1-a
ID* Y (Aodf ) rrre S Il Aodf |l rors s - ==
q T 2
a—s s 1 1 a-—s 1 s
< |[D*7* Aol prra | D*df || ge r2 o= (5 - ) + (5 - 5)

S ||A0||LfW£*“||df|

Hs:0 .
Now let 1 < a < min(4s — 1,1 + 5,2s5). We look at « = 1 and 1 < a <
min(4s — 1,1+ s,2s) separately. Let a = 1 and suppose s > 1, then the proof

is trivial since then H*Y — L7, so
[ Aodflzrrs < I Aollzrcalldf |l nge,

S Aol oy lldf|

(3.115)

Hs,0 .
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Ifs:l,pick1>a>0sothat%—%>0. Then

140 lzs < N0l 0 et 1 e

S Aol pweea | DV df || perz,  since % = % — % (3.116)
< Aol gz olldfllneo,
Now suppose s < 1. We have
| Aodf||rrs < ||A0\|L5L§:1/q—<1—s>/2>—1 ||deL§oLg/lfs
S Aol pwp-sal D*df || 1512 (3.117)

Hs.0.

< Aol gyl

This completes the case a = 1. For 1 < a < min(4s — 1,1 + s,2s) we look at
s < a and s > a. For s < a we obtain

1D (Aodf ) Lrrs S HDa*lAOHL;toLg/q—m—s)/zrl deHLtooLga_s)/zfl
+ HAOHLng/q%afs)/m*l HDaildf“LtooL(z“’S)/Q*l
SID" Aol g 1D gy =5 - e
+ 1D Al o | DU || e 2
S Aol ewealldf || s

If32a>1,againpick1>a>Osothat%—%>O. Then

1D (Aodf) lezas < 1D Aoyl s

+ ||A0||LfL£71/q70‘/2>71 ||Da_1df||L?oLg/271
S Aol owaalldf || o0
1 1-
+ |D Aol g | D df | o2, since % =573 a
S Aol owasalldf || o0
Then as before if the H* norm of df is sufficiently small, we obtain
[Aollzwes S Nldf | so| @]l o (3.118)
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as needed. O]

Corollary 3.5.4. If s > %1 and the H*% norm of df is sufficiently small, we

have in particular Ay € LY L for p satisfying

1 1
1-2s<-< = 3.119
<< (3.119)
and we have the following estimate
[Aollzrree S @l msolldf |l e (3.120)

Proof. For each p € (1 — 2s, %) we can find some a and ¢, which satisfy the

conditions of Theorem 2, part ii). The corollary then follows from the Sobolev

Embedding: W*(R?) — L>(R?) for aq > 2. O

3.6 Estimates Needed in Section 3.4.5.

Now we are ready to benefit from the theorems asserted in the previous

section. Recall from Section 3.4.5 we would like to establish
Ag € LV N LYW,

By Corollary 3.5.4 we have A, € Lngo. Theorem 3.5.1 part i) with a = s

gives Ay € LPW9 for any p, q satisfying

1 11
max  =(1—2s), min=(s,1) | < = < —— (3.121)
3 qg 2
2 1 1, 1 1 1, 2
1-Z—s<>-<-(1--) and -<-(1-2+5s). 3.122
2ossisi0-h) ad tsj0-2es. @)
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The conditions on p, q are further restricted since we would like to use
1750 Hl_(1_§)_(%_%),e(Rz+1) R Lgl/%l/p)‘lL(1/271/q)*1, (3.123)
in (3.78). This gives two more inequalities p, ¢ must satisfy

1—(1- ) <'s, so the 1st embedding holds in(3.123), (3.124)

), so the 2nd embedding holds in(3.123).  (3.125)

(3.122) and (3.125) force i to actually equal 5(1 — é) As a result (3.124) also

gives a stricter upper bound on %. Namely

< —s.

Q|
Wl N

When we put (3.124) and (3.125) together with (3.121) and (3.122) we obtain
the second line of (3.76)

2 1 1 1 1 2
P 1— 7 max(g(l —2s), émin(s, 1)) < p <3S (3.126)

Now, since these conditions are more restrictive than the conditions in (3.83)
and (3.84), the proof of Theorem 3.5.1 implies Ay € LY W4, Therefore, the
only thing we need to check is that we can find such p and ¢. And yes, we

can, as long as s > }1.

Remark 3.6.1. The use of LYL N LYW illustrates difficulties of working in
2 dimensions. Initially, we wanted to follow Selberg’s proof of estimate (38)
in [23], and just use [|[A®Ag| e norm. Unfortunately in 2D, the condition

sq > 2 needed to show Ay € LYL® is disjoint from condtions needed to use
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Klainerman-Tataru theorem and establish that A*Ag € LY L2 in the first place.
This resulted in the more complicated space for Ay and also having to employ

Klainerman-Selberg theorem in section 3.4.5, which was not needed in [23] for

the proof of (38).
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Chapter 4

Ward Wave Map

4.1 Introduction

In this chapter we would like to prove Main Theorem 2. First we show
how one can derive (WWM) from (ASDYM). Second, we show conservation

of energy, and then we finally prove our theorem.

4.2 Derivation of the Ward Wave Map

In this section we derive the Ward Wave Map from the (ASDYM). This
is done in four steps. First we introduce (ASDYM) connections. Then we give
an equivalent formulation called a Lax Pair. The next step is a dimensional
reduction followed by a proof of existence of appropriate gauge transformation,
which will give us a Lax Pair for the Ward Map. The final step consists of
introducing new functions and a change of variables that will allow us to

recover (WWM). We closely follow [28] and [4].

4.2.1 Self-Dual and Anti-Self-Dual Yang Mills Connections

Let

dx? + das — daj — da]
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be a metric on R?2. Recall from Chapter 3 a connection A is called anti-self-

dual Yang Mills (ASDYM) if its curvature form satisfies:
F=—xF,

which in coordinates is equivalent to

Fig = —Fyy, Flg = —F34, o3 = Fly.

4.2.2 Lax Pair of ASDYM
Next, we give an equivalent condition for a connection A to be ASDYM.
Proposition 4.2.1. A connection A = {D,} is ASDYM if and only if
A(D1 — D3) — (Dy+ D2),\(Dy — Dy) — (D1 + D3)] =0 (4.1)

for all A € C.

Proof. First we use the bilinearity of the bracket to expand (4.1), collect the
terms corresponding to powers of A, and observe that equation 4.1 will hold
for all A € C if and only if the coefficients of A2, A\, \? are zero. Coefficient of
A2 is:
[Dy — D3, Dy — Dy] = 0.
Since, Fj; = [D;, D;], we obtain
Fiy — Fig — F34 + F3, = 0. (4.2)

Coeflicient of \ is:

[Dy + D3, Dy — D3| + [Dy — Do, Dy + D] = 0.
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It follows, Fiz3 — F31 — Fyo + F5y = 0, so Fi3 = —Fy; as needed. Finally,

coefficient of \? = 1 is:
[Dy+ Dy, Dy + D3] =0, (4.3)

so —Fi4 + Fy3 + Fo1 + Fo3 = 0. Adding (4.2) and (4.3) we get Fip = —F3y as

needed. Using it in 4.3, we obtain Fi4 = Fb3 as needed. O

Remark 4.2.1. This condition, writing an equation as a zero curvature of a
connection or its portion, is referred to as a Lax pair formulation. The ad-

ditional parameter A is called spectral, twistor or Riemann-Hilbert parameter

[5].

4.2.3 Dimensional Reduction & Gauge Transformations

Now, having a Lax Pair formulation of ASDYM, we proceed to the
dimensional reduction, where we assume A is independent of x3. We also let

Az = ¢. Set x = 1 and

To + Ty Ty — To
= U—

2 2

A, =A+ Ay A, = Ay — Ao

Then from A%, A\, \? coefficients we will have,
[0 + A — ¢,0,+ A, =0 (4.4)
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The equivalent Lax-Pair formulation is:
[)‘(az + Al - ¢) - (au + Au)7 /\(811 + Av) - (81 + Al + Qb)] =0 (45)

We will need the following proposition to transform (4.5) into a Lax Pair for

the Ward Map.

Proposition 4.2.2. [28] Given smooth maps A, B : R? — gl(n, C) the follow-
ing statements are equivalent:

1) the linear system for g : R? > U — GL(n,C)

Je = gA, gy = 9B, 9(0,0) = go
has a solution.
2) Ay+ BA=B,+ AB.
3) [0, +A,0,+ B] =0.

4) There exists g : R D U — GL(nC) so that

{ 9(0: + A)g~' =0,
9(0, + B)g~' =0,

Proof. We will show 4 & 1 < 2 < 3.
It is easy to see by direct computation that 4 and 1 are equivalent. Start with

the first equation in statement 4:

g(am + A)Q_l = 0,
90,9 "+ gAg~t =0,

O — gug * +gAg~ ! =0,
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where the last line holds iff g, = gA. The proof for the other equation is exactly
the same. Also, to go from line 2 to line 3 we used a simple computation that is
shown in detail in Section 4.3, equation (10). 1 < 2 follows by differentiating
gz = gA with respect to y and g, = gB with respect to z, and using the fact

that the mixed partials are equal. Lastly, 2 is just another way to write 3. [J

By the first equation in (4.4) we have that statement 3 holds. Therefore,
we have statement 4, which means that locally we can gauge our connection

to be a trivial connection as follows:

90+ A1 = ¢)g™! =0,
90y + Ay)g™t =0,

This will reduce (4.5) to Ward Map Lax Pair given by:
(AD, — 0, — A, N0, — O, — B] =0, (4.6)

where A and B are to be defined next. First

0 g[)‘(ax + A — ¢) - (au + Au)a )‘(811 + Av) - (896 + Ay + ¢)]g_1

[g(A0x + A1 — ¢) — (Ou+ Au)) g™, g(M(Oy + Ay) — (00 + Az — 0+ 20))g ']
A — g(Du + Au)g ™, Ay — 20,9097 1]

Now we obtain (4.6) when we observe (using (10) in Section 4.3):

g(au>g_1 = _gug_l + am

and if we let A = gA,g7! — g9~ and B = 2g¢g".
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4.2.4 Final Steps

Now we show how to transform (4.6) into (WWM). Let ¥ : R*! x Q —

GL(n,C) solve
(A, — 0,)V = AV,
(D, — 0,)¥ = BY,

and satisfy W(z,u,v, \)*¥(z,u,v,\) = I, where ¥* = T Let J(x,u,v) =
U(x,u,v,0)"!, and A= J'J, and B = J'J,. If we consider coefficient of

in (4.6), we will obtain

Now all is left is to plug in for A and B and change to the standard variables:
t =v+u,y =u—v. The result will be equation (??), which we present again

for convenience:

T — (T e — (T4, — [T M T, = 0.

4.3 Conservation of Energy

In this section we provide an alternate proof of conservation of energy
for (WWM), which was shown in [30] using the energy momentum tensor.

Here we show it directly. The precise result is as follows

Theorem 4.3.1. Let
1 _ _ _
E(J(1)) = 5/1&2 T2 TP A T TP + (17 [ daedy,
where || - || is the trace norm

A2 =< A, A >= tr A"A.
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Then if J solves (WWM),

E(J(t) = E(J(0)) forall t.

We need the following lemma for the proof.

Lemma 4.3.2.

i) Let < -,- > and [, -] denote the inner product induced by the trace
norm, and the Lie bracket respectively. Then for any two matrices A, B

we have

<[A,B],A>=0 (4.7)
ii) Let s be a differentiable map from R"™! into a Lie group, then

Oa(s71) = =571 (048)s™ . (4.8)

iii) Let s be a twice differentiable map from R™! into a Lie group, then

(57s0)5 = (57188)a + [s 7 s5, 8 54l (4.9)

Proof. For i) using properties of trace
tr(AB — BA)A=tr ABA —tr BAA =tr ABA—tr ABA=0.

For ii) since
s s =1,
the product rule gives

Oa(s1)s 4+ 5 10,5 = 0.
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Solve for 9,5~ to obtain (4.8).

Lastly, iii) can be verified by a straightforward computation using (4.8). [

Proof of Theorem 4.3.
d
ity (t))
— /Z < (J7H) e, J My > dady
= /Z < (J '), J My > dady by (4.9) &(4.7)

= / < (') TV > 40, < TV TV > — < (T ), T >
+0y < (J), T e > — < (TN, TN > dady

= / < [T g, T ), T > dady

=0 by (4.9),

where we use the divergence theorem to go the line before last together with

the assumption that J solves (WWM).

4.4 Proof of Main Theorem 2

We recall the statement of the theorem.

Main Theorem 2. Ward Wave Map (WWM) is locally well-posed for initial
data in H*(R?) x H**(R?) for s > 2.

First (WWM) can be written as a semilinear wave equation as follows
0J = JW(0J,0J),
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where

W(0J,0J) = —J 0T T 00 + [T\, T ).

By discussion in Section 2.2 it is enough to establish following estimates

|JW (0J,0J)| gso-1+¢ S || /] ?}mwv (4.10)
|JW (0J,0J) — J/W(ajl,az]/)||Hs,9—l+e S - J’\ Fes+1,60. (4.11)
Write
W(0J,0J) = W1(0J,0J) + Ws(dJ,0J),
with

W1(0J,00) = —J'0°JJ 0, and Wy(0J,0.J) = [J"J,, J " Ja].

4.4.1 Proof of (4.10)

Use Theorem 2.3.5 to obtain

Hs+1,9 . Hs,9+e—1 FEN Hs,@-ﬁ-s—l

Hence
TW (D, 00 | gre0- e < 1 |lgesno || W (DT, 0T | gro0- 1. (4.12)
Next
W (D, 00 | jgoo-10e < WO, 0T |ggoo-15e + [Wa(D,0T)|[grosrse. (4.13)

For Wy, observe
W1(0J,0J) = 0*(J 1)0ud = Qo(J 1, J).
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Thus by Theorem 2.5.5 we have

WW1(0J,00)|| grs.o—1+e S ||| ges1.0]| S || ges+1.0 (4.14)
as needed.
For Wy by part iii) of Lemma 4.3.2 we have
[T T, T = (T ) — (T ))a, (4.15)

which on Fourier side looks as follows
(T T)(7,€) = (T 1J)a(7, )
= irJ Iy (7. §) = i&T (7€)
=~ [[ (i = N T = g = )T miran
Therefore
Wa(0J,0J) = Qu(J 1, J),
and by Corollary 2.5.10 we have

W2(9.,0.7)]

ao-e S ]

j.(s+l,0HJ| j.(s+1,0 (416)

as needed.

4.4.2 Proof of (4.11)

Since W is bilinear there is not much to prove as it mostly follows from
previous section. Observe
W(oJ,0J) — JW(dJ',0J")
=(J=JYW(@J,0J)+J (W(J-J,J)+W(J,J=J)).

(.
v N~
1

11
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For (I) use Theorem 2.3.5

|(J = JYW(DJ,0J)]

Hs,0—1+e€ 5 HJ - J/|

sesio||W (DT, 0))|

Hs,971+e

G(s+1,0 || J_1| Fs+1,0 || J|

j.Cs+1,9 y

S =

where the last line follows from (4.14) and (4.16).
For (IT) again by Theorem 2.3.5 and (4.14) and (4.16) we have

1S (W (=T, J)+W(J, J=J))]

Hs,9—1+e

S gestro + || [agvr0) | ] = J'|

ges+1.0 (|| /]

F(s+1,0,

which completes the proof.

83



Appendices

84



Appendix A

Setting up Klainerman-Tataru and
Klainerman-Selberg Theorem

A.1 Elliptic Estimates: Setting up Klainerman-Tataru

Theorem

We said that several estimates in the previous theorems follow from the

Klainerman-Tataru theorem [19]. We need to check that it is in fact the case.

We begin by stating the theorem. We state it for two dimensions only, and as

it was given in [18] (the original result holds for n > 2).

Theorem. Let 1 <p < oo, 1< ¢ < oco. Assume that

L<30-2)

q
1 1
O<o<?2 < - —)
q D
<1 1
S1, 8 - — —,
1,52 q 2
1 1
81+52+U:21 - — — ).
( . 2p)
Then
D77 (uwo)|lzrra@ey S llullgove vl oo,

provided 6 > %
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We apply the theorem several times. We examine each case.
Application of Klainerman-Tataru Thm in (3.87) for |D~'(dfo)||rLs,
p and ¢ as in (3.83) and (3.84) with a = 0.

We check that (A.1)-(A.4) hold. Note, 0 = 1 here.
For (A.1) we have by (3.83)

1 1 1
— S - — -
P2 q
which implies (A.1). For (A.2) we need
1 1
1<2(1—-—-),
( . p)
but this is the same as
1 - 1 1
p 2 ¢

which holds by the right hand side of

~—~

3.84). Next note s; = so and that with

o =1 (A.4) implies (A.3). So we show (A.4) only, which requires

11
261 +1=2(1— =~ — —).
1 (1=2-3)

We are okay as long as s; < s, so after rewriting (A.1) we must have

2 1
1-2—2s< -, (A.6)
q p

but that is the left hand side of (3.84).
Application of Klainerman-Tataru Thm in (4.3) for |[D*'(dfo)||rre,
p and ¢ as in (3.83) and (3.84) with 0 <a < 1.
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Note ¢ = 1 —a now. (A.1) and (A.2) hold by the right hand side
of (3.84). Next (A.4) with 0 = 1 —a implies (A.3), so we show (A.4) only. We

have
1 1
2s1+1—a=2(1—-——),
(1=2=3)
and again we are okay as long as s; < s. Therefore we must have
2 1
l——+a—2s<—, (A.7)
q p

but as before, this is the left hand side of (3.84).
Application of Klainerman-Tataru Thm in (3.114) for [|D=(df¢)||r .,
|D*(df )|l r s, where p and ¢ are as in (3.111) and (3.112) with 0 <
a < 1.

If we observe that (3.84) ensured above that conditions (A.1)-(A.4)

were satisfied, we are done since (3.112) implies (3.84).

A.2 Elliptic Estimates: Setting up Klainerman-Selberg
Theorem

We also say that several estimates in Theorems 1 and 2 follow from
Theorem D [18]. We need to check that it is in fact the case. We begin by

stating the theorem.

Theorem. The embedding

holds whenever

9 1 1
2<p<o00.2< S<cn=1)(=—"> d 6> =
< p < oo, _q<oo,p_(n )(2 q) an >3
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We use the theorem four times. We discuss each case.
Application of Klainerman-Selberg Thm in (4.5) for [|df|| 20 2a(|0]] ;20 24,
p and ¢ as in (3.83) and (3.84) with a = 1.

We need

2 1
H' 2w o 212

This requires

2 1 1
<o
2p — 2 2q

but this follows from the right hand side of (3.84).
Application of Klainerman-Selberg Thm in (4.6) for HD“_ldeLingl

and [[¢||r2p22 wWith 1 <a <1+s.

We show we can in fact find p;, ¢;,7 = 1,2 where

1 1 1 1 1 1
b P1 P2 q q1 q2

with p and ¢ as in (3.83) and (3.84) and so that Theorem D applies. We
consider two cases: s > 1 and s < 1.
Case s > 1.

With p and ¢ as in (3.83) and (3.84) let

(1, 1) = (0,2)  (p2,42) = (p, 22__qq) (A.9)
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Then we have
HDaildeLflLil H¢||Lf2Lg2 :HDafldeLgoLiH<Z5||LpL(1/q71/2)—1
t+ L
< deHL?chH¢||L§L§C1/q71/2>—1 (A.10)

S lldf|

Hs0 “ZﬁHLngjl/qfl/z)—l

So we just need to check the theorem applies to the second term. First, it
is clear that 2 < p < oo and 2 < (1/g — 1/2)"! < oo. Second, we need

2 < (3 — (g — 3)), but this follows from the right hand side of (3.84). Finally

we must have
1
1-2(1/g—1/2) — = < s.
Rearrange to obtain

2-2/q—s<

=

Since for s > 1 the left hand side is negative, we win.

Remark A.2.1. Observe that for s > 1 we do not need any lower bounds on p,

i.e., we could rewrite (3.84) as
(1—-). (A.11)

Case s < 1.
This case is very convoluted. Within it we distinguish two subcases:

% < % + %5* and % + 952 < % < 1. The latter is straighforward whereas the
former involves two subcases, and the second subcase has two subsubcases,
where the first subsubcase has two subsubsubcases. This is described in the
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following diagram.

s<1
11, a—s 1, a— 1
2 S3+ 5+ 5o < <1
1 o101, a— 1 1/1 4, a—s _ 1 1 1 1
» <3G+ -9 s+ 5 )<, <50-7)

)
A
L[]
N[
IN
@
IN
—

< s s 1
— 3 3<p

=

We begin with the straightforward case and suppose % + 452 < % < 1. Write

Then as for the s > 1 case we have
ID* " df || rprg < HDa*ldeLg%gH¢HL$LS/q—1/2>—1
< ND%df\lzerz 191l p pasarrz- (A.12)
< efllz-oll 6l v
And again, we just need to check the theorem applies to the second term.

First, it is clear that 2 < p < oo and 2 < (1/¢—1/2)"! < 0o. Second, we need

2<% (% — 1)), but this follows from the right hand side of (3.84). Finally

we must have

1—2(1/q—1/2)—% <s.

Rearrange to obtain

1
2—2/qg—s< -,
p
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We claim the left hand side is negative. This is obvious when we observe that

fora>1
2—5 1 a-—s 1

< < —.
2 2" q

Now suppose % < % + %57, and look at the first subcase
1—§+a—23§%§%(%+“;‘9_2),
Let
(p1.p2) = (0,p) (A.13)
and write % as
32 a;er(é_ags)’

Then we have

1D df [l o (|01l 2 o2 =||D“_1df||L 2

a—s
L

SIDT T || e 2 ||¢||L$L;1/q—<a—s)/2>*1

< lldf]

¢||L$L§:1/q7(afs)/2)71

Hs0 |¢||L§L;1/q7(a7s>/2>*1 ;

(A.14)

where we use
a— s 1 l1—a+s

2 2 2

So we just need to check Theorem D applies to the second term. Again, it is
clear that 2 < p < oo, and by our choice of ¢ we also have 2 < (1/q — (a —

5)/2)7! < co. Second, we need




but this is exactly what we are assuming in this case. Finally we need,

1_a—s 1
Hs)e (SN Hl_Q(E_ 2 )_;79'

This follows from

Nowsuppose%—i—%—é < % < 1—5.
uation first: s > 3/4. Write
1 1 1 11 —
— =——— where —=—-(z i
PP P2 p2 22 2
and
1 a—s 1 1 —
— = and —=- 2"
41 2 a2 g 2

It is easy to check 2 < p; < 00,2 < ¢; < 00,7 = 1,2. We must check

1 1.1 1
l—-—4a-1-s<—< (= ——
Q P22 @
1 1.1 1
l-——s<—<~(z——
q2 P2 22 @
Plug in for pil and for qu in (A.15) to obtain
1 1 1,1 —
1—a+s+a—1—s<———§—(——a S)
p py 22 2
11 a—s 1 1 1.1 a-s 1.1
R T i 15
2°2 2 q p 22 2 2°2
1,1 a—s 1 1 1 1
S+ <<,
2°2 2 q p 2 q
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which holds by our assumptions on p. Next plug in for p% and for qiz in (A.16)

to obtain
1—5+a—25§%(% a;s_g)
—(1+a—§s)§é
Now, if s > % we have the left hand side must be < % Next let s < %, and
%(%+"2;s—%)<%§§. Set p;, ¢;, = 1,2 just like above for the case s > 3.

Everything works out the same till we come to showing (A.16) and we have
to establish

| 7
TigaTo<
gl ta—g9)=

<Y |

or equivalently

1 a—s 2 1
— -5 < —, A17
2T T T3Sy (A.17)

In this case, the lower bound for p can be rewritten with = on the right hand

Q=

side giving

(A.17) follows as needed.

and since L < £
p 37

Finally we look at the last part: s < 3/4 with § < © < (1 - 7)
Write
1 1 1 1 l1—-s s
— =—-—— where — = - =,
a9 @ q2 2 6
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and
1 1 1 1
—=—-—— where — =
P1 b D2 P2
Note0<qi2<%since0<s<%. WealsohaveO<—since%<%<%. To

q1

= Wl ®»

show qil < % we need

1 < 1 n 3—4s
q~ 2 6
or equivalently
1 1
5 <50-2),
37 2 q

fglgl(l_l)'
3T p 2 q
Itisobviousogigé, 1 =1,2. Now we check
1 1.1 1
(I—S——S_S_(___)v
QP22 @
and
2 1 1.1 1
lms— o< < (-
@ P2 22 q
Plug in for p; and ¢; to get
2 3—4s<1 s<1(1 1+3—4s)
a—s— — ——=<=(=z--
q 3 T p 3722 ¢ 6
2 4 1 s 1 1 2s
—s5—=-41—-—<-—-=-<(1=-==— A.18
ems—Stl-FEoot<i0-s-3)  (a)
1 1 1
a—2s—-+1<-<-(1--),
p 2 q

but this follows from left hand side of (3.84). Now we plug in for py and g» to

obtain

), (A.19)



which simplifies to § everywhere, and concludes checking all the cases.

Application of Klainerman-Selberg Thm in (4.4) for HD“_l(dfgb)HLng.
Now we look at how we can use the theorem in (4.4). For a = 1, it

works similarily just like in Section 3.1. For a > 1, we again consider two

cases, but this time s > a and s < a.

s>a

We set
1111
pi 20 @ 2
Clearly 0 <p; <2, 0<¢q <1,i=1,2. Then we need

1 1 1.1 1
G—s5—-< < (z— ), (A.20)
g 2p 7 22 2q
and
1 1 1.1 1
EPSEL DI e (A.21)
g~ 2p 7 2°2 2¢q

(A.21) follows from (A.20), and the left hand side in (A.20) is negative while

we can rewrite the right hand side as

1

1 1
S<Z ’
P2 2
which holds by (3.112).

s<a

Here the steps are exactly the same as in section 3.2.2 except that that we do

not have to look at the case % +452 < % since here % < %

95



Appendix B

Bilinear Estimates in the “Easy Region.”

This appendix is really just a simple exercise, but since it does not take
too much space, and since we refer to it several times, we include it here for
completeness. We refer to this region as easy, not only because the math we
use is very straightforward, but also, because in this region we do not need
any special structure. In fact all we need is that we can bound the symbol in

question by
(7l + 1ENUM + nl). (B.1)

Plug into (4.3) we obtain

]</7'1 (171 + IEDIA + D F (7, OGO mH( + X € +m)
w? (7 4+ X €+ p)wy (1, w2 (1, €)1+ [n])rws (A p)w (A, )
S// F(r,&)G(\,n)H(r + )\, € +1) (B2)

w2+ A €4 w2 (r €)1+ ) (A n)

s_1
Next by Cauchy Schwarz, and dropping w_ *(7 + A\, + 1) (since it is < 1),

we have,

H2<T + >\7€ + 7]) 2
= HFHHGH{ // W (1 + )™ (A n)degdAdn} .

-
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Proof for the region: |7| > 2|¢|. In this region |7| — [¢] > |£], so we can

substitute (1 + [€])2¢T2) for the weight w_ (7, £)2T2). Consequently,

H*(14+ )\ E+0n) 3
= HF”HGH{ // (1+ |£|)2(s+é)(1 + ’m)sti(s%)()\’n)degd)\dn} (B4)

-

Next we perform several changes of variables. First we translate 7 + \ to 7,

£+ n to &, and then finally we let

which we substitute for A\. Since H € L?, we are done if for fixed £ we can

bound:

1
// (14 [€ — )26+2 (1 + [n])2e(1 + |U’)2(s+%)dvdn (B.6)

Now, as long as s > 0, we have that 2(s + %) > 1, so it is obvious that

/ dv
(1+ o)D)

is bounded. Therefore we are left with

1
J:/ Yo dn.
(1+[€ = n)*C+2) (1 + [n])>

(B.7)

For completeness we show the details for this integral. We break R? into two

regions:

Er={n:1{=nl>n} and E,={n:|{—-n|<|nl}. (B.8)

Then
J=Ji+ Jo,
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where

/ d” (B.9)
(1+ 1€ = n)2=+2 (1 + [n])>
Now
J / i
1 p—
B (L+€~ 77\ )2 (1 [n])>
< / 0, (B.10)
r2 (1+ |n])> (1+|77|)
as long as s > i. Next
J / i
2 = 1
By (14 1€ = n])*¢T2)(1 + |n])?
/ il —=C (B.11)
r2 (1 + ] — p|)2eta)t2s

as long as s > ;11, and where C'is independent of £ since we can change variables
in the integral. This concludes the proof in the case || > 2[¢|.
Proof for the region: |\| > 2|n|. This case is analogous to the previous one,

but again for completeness, we show the details. In this case |A| — |n| > |n], so

we can substitute (1 + |])2¢T2) for the weight w_ (), 7)2+2). Consequently,
H2(t+ M\ E+7 3
1< |F|c // o ) —drdgdAdn}’
(7, ) (L + )= (1 + ]2+

(B.12)
Next we perform several changes of variables. First we translate 7 + A to A,

£+ nto &, and then we let
v= = 1€ =l (B.13)

Since H € L?, we are done if we can bound

// dvdy) -
(L4 [l DL 221+ )2+ |
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Now as long as s > 0, we have that 2(s + %) > 1, so it is obvious that

/ dv
(A + o)

is bounded. Therefore we are left with

_ / dn
(1 )Rt

(B.15)

but this is bounded as long as s > 411' This concludes the proof.
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