In single variable calculus we studied scalar-valued functions defined from $\mathbb{R} \rightarrow \mathbb{R}$ and parametric curves in the case of $\mathbb{R} \rightarrow \mathbb{R}^{2}$ and $\mathbb{R} \rightarrow \mathbb{R}^{3}$. In the study of multivariate calculus we've begun to consider scalar-valued functions of two variables in the case $\mathbb{R}^{2} \rightarrow \mathbb{R}$. Let us now try to think of all the possible functions we may come across in the study of real variable calculus.

Different Types of Functions:

Scalar-valued functions from \mathbb{R} to \mathbb{R} : For example consider $f: \mathbb{R} \mapsto \mathbb{R}$ defined by $f(x)=\sqrt{x}+2^{x^{2}} .$	Parametric curves from \mathbb{R} to \mathbb{R}^{m} : - Planar curves For example consider $\mathbf{r}: \mathbb{R} \mapsto \mathbb{R}^{2}$ defined by $\mathbf{r}(t)=\langle\cos (t), \sin (t)\rangle .$ - Space curves For example consider $\mathbf{r}: \mathbb{R} \mapsto \mathbb{R}^{3}$. defined by $\mathbf{r}(t)=\left\langle\cos (t), \sin (t), \frac{t}{10}\right\rangle$
Scalar-valued functions of multiple variables from \mathbb{R}^{n} to \mathbb{R} : For example consider $f: \mathbb{R}^{2} \mapsto \mathbb{R}$ defined by $f(x, y)=x^{2}-x y^{2}$	Vector-valued functions of multiple variables from \mathbb{R}^{n} to \mathbb{R}^{m} : For example consider $\mathbf{f}: \mathbb{R}^{3} \mapsto \mathbb{R}^{2}$ defined by $\mathbf{f}(x, y, z)=\langle 3 y z, 4 x+y\rangle .$

With all these new functions, we return to a familiar question:

How do we differentiate these things?

We have considered derivatives for differentiable functions from $\mathbb{R} \rightarrow \mathbb{R}, \mathbb{R} \rightarrow \mathbb{R}^{n}$, and $\mathbb{R}^{m} \rightarrow \mathbb{R}$. Recognize that these are specific cases of functions from $\mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$.

Derivatives of Diffent Types of Functions:

Scalar-valued functions from \mathbb{R} to \mathbb{R} :	Parametric curves from \mathbb{R} to \mathbb{R}^{m} :
We define the derivative of a differentiable scalar function $f: \mathbb{R} \mapsto \mathbb{R}$ as	We define the derivative of any vector-valued function of one variable $f: \mathbb{R} \mapsto \mathbb{R}^{n}$, for $\mathbf{f}(t)=\left\langle x_{1}(t), \ldots, x_{n}(t)\right\rangle$ as
f^{\prime}	$\mathbf{f}^{\prime}(t)=\left\langle x_{1}^{\prime}(t), \ldots, x_{n}^{\prime}(t)\right\rangle$
	given each $x_{i}^{\prime}(t)$ exists.
Scalar-valued functions of multiple variables from \mathbb{R}^{n} to \mathbb{R} : We define the derivative of a scalar-valued function $f: \mathbb{R}^{n} \mapsto \mathbb{R}$, given each partial of f exists and is continuous as	Vector-valued functions of multiple variables from \mathbb{R}^{n} to \mathbb{R}^{m} :
	We define the derivative of a vector-valued
	function of two variables $\mathbf{f}: \mathbb{R}^{3} \mapsto \mathbb{R}^{2}$, for $\mathbf{f}(x, y, z)=\langle u(x, y, z), v(x, y, z)\rangle$ as the 2×3 matrix
$\nabla f=\left\langle f_{x_{1}}, f_{x_{2}}, \ldots, f_{x_{n}}\right\rangle$ $\overline{\text { We can also refer to this derivative as the gradient }}$	$D \mathbf{f}=\left[\begin{array}{ccc} u_{x}(x, y, z) & u_{y}(x, y, z) & u_{z}(x, y, z) \\ v_{x}(x, y, z) & v_{y}(x, y, z) & v_{z}(x, y, z) \end{array}\right]=\left[\begin{array}{c} \nabla u \\ \nabla v \end{array}\right]$
vector of f, and denote the gradient of ∇f.	given each partial derivative exists and is continuous.

Compute the derivative for the following functions.

1. $\mathbf{f}(x, y)=\left\langle x^{2}+y^{2}, x y\right\rangle$

Solution: The function \mathbf{f} maps from $\mathbb{R}^{2} \mapsto \mathbb{R}^{2}$. This is a vector-valued function of multiple variables, and its derivative will result in a 2×2 matrix.

$$
D \mathbf{f}=\left[\begin{array}{cc}
2 x & 2 y \\
y & x
\end{array}\right]
$$

2. $g(u, v)=2 u^{2}-v^{2}$

Solution: The function g maps from $\mathbb{R}^{2} \mapsto \mathbb{R}$. This is a scalar-valued function of multiple variables, and its derivative will result in a gradient vector.

$$
\nabla g(u, v)=\langle 4 u,-2 v\rangle
$$

3. $\mathbf{r}(t)=\left\langle 3 t^{2}, \ln \right| t|, 1, \cot (t)\rangle$

Solution: The function \mathbf{r} maps from $\mathbb{R}^{2} \mapsto \mathbb{R}^{2}$. This is a parametric curve, and its derivative will result in a vector.

$$
\mathbf{r}^{\prime}(t)=\left\langle 6 t, \frac{1}{t}, 0,-\sin (t)\right\rangle
$$

4. $\mathbf{w}(r, s, t)=\left\langle r^{2} s, t^{r}+3 s^{2}\right\rangle$

Solution: The function w maps from $\mathbb{R}^{3} \mapsto \mathbb{R}^{2}$. This is a vector-valued function of multiple variables, and its derivative will result in a 2×3 matrix.

$$
D \mathbf{w}=\left[\begin{array}{ccc}
2 r s & r^{2} & 0 \\
t^{r} \ln |t| & 6 s & r t^{r-1}
\end{array}\right]
$$

