In single variable calculus we studied scalar-valued functions defined from $\mathbb{R} \to \mathbb{R}$ and parametric curves in the case of $\mathbb{R} \to \mathbb{R}^2$ and $\mathbb{R} \to \mathbb{R}^3$. In the study of multivariate calculus we've begun to consider scalar-valued functions of two variables in the case $\mathbb{R}^2 \to \mathbb{R}$. Let us now try to think of all the possible functions we may come across in the study of real variable calculus.

Different Types of Functions:

Scalar-valued functions from \mathbb{R} to \mathbb{R} : For example consider $f : \mathbb{R} \mapsto \mathbb{R}$ defined by $f(x) = \sqrt{x} + 2^{x^2}$.	Parametric curves from \mathbb{R} to \mathbb{R}^m :• Planar curves For example consider $\mathbf{r} : \mathbb{R} \mapsto \mathbb{R}^2$ defined by
	$\mathbf{r}(t) = \langle \cos(t), \sin(t) \rangle.$ • Space curves For example consider $\mathbf{r} : \mathbb{R} \mapsto \mathbb{R}^3$. defined by
Scalar-valued functions of multiple variables from \mathbb{R}^n to \mathbb{R} : For example consider $f : \mathbb{R}^2 \mapsto \mathbb{R}$ defined by $f(x, y) = x^2 - xy^2$.	$\mathbf{r}(t) = \left(\cos\left(t\right), \sin\left(t\right), \frac{t}{10}\right).$ Vector-valued functions of multiple variables from \mathbb{R}^n to \mathbb{R}^m : For example consider $\mathbf{f} : \mathbb{R}^3 \mapsto \mathbb{R}^2$ defined by $\mathbf{f}(x, y, z) = \langle 3yz, 4x + y \rangle.$

With all these new functions, we return to a familiar question:

How do we differentiate these things?

We have considered derivatives for differentiable functions from $\mathbb{R} \to \mathbb{R}$, $\mathbb{R} \to \mathbb{R}^n$, and $\mathbb{R}^m \to \mathbb{R}$. Recognize that these are specific cases of functions from $\mathbb{R}^m \to \mathbb{R}^n$.

Derivatives of Diffent Types of Functions:

Scalar-valued functions from \mathbb{R} to \mathbb{R} : We define the derivative of a differentiable scalar function $f : \mathbb{R} \mapsto \mathbb{R}$ as	Parametric curves from \mathbb{R} to \mathbb{R}^m : We define the derivative of any vector-valued function of one variable $f : \mathbb{R} \mapsto \mathbb{R}^n$, for $\mathbf{f}(t) = \langle x_1(t), \dots, x_n(t) \rangle$ as
	given each $x'_i(t)$ exists.
Scalar-valued functions of multiple	Vector-valued functions of multiple
variables from \mathbb{R}^n to \mathbb{R} :	variables from \mathbb{R}^n to \mathbb{R}^m :
We define the derivative of a scalar-valued function	We define the derivative of a vector-valued
$f: \mathbb{R}^n \mapsto \mathbb{R}$, given each partial of f exists and is	function of two variables $\mathbf{f}: \mathbb{R}^3 \mapsto \mathbb{R}^2$, for
continuous as	$\mathbf{f}(x, y, z) = \langle u(x, y, z), v(x, y, z) \rangle$ as the 2 × 3 matrix
We can also refer to this derivative as the gradient vector of f , and denote the gradient of ∇f .	$D\mathbf{f} = \begin{bmatrix} u_x(x, y, z) & u_y(x, y, z) & u_z(x, y, z) \\ v_x(x, y, z) & v_y(x, y, z) & v_z(x, y, z) \end{bmatrix} = \begin{bmatrix} \nabla u \\ \nabla v \end{bmatrix}$ given each partial derivative exists and is continuous.

Compute the derivative for the following functions.

1.
$$f(x,y) = \langle x^2 + y^2, xy \rangle$$

2. $g(u,v) = 2u^2 - v^2$

3. $\mathbf{r}(t) = \langle 3t^2, \ln |t|, 1, \cot(t) \rangle$

4. $\mathbf{w}(r,s,t) = \langle r^2 s, t^r + 3s^2 \rangle$