
Math 2400: Calculus III Riemann Sum with Mutliple Variables

Review of Calculus 1:
Recall from single variable calculus that we are able to approximate the area under continuous curves on closed
intervals by partitioning the intervals into n subintervals of equal width ∆x to form Riemann sums.
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To find the exact area, we refine our partition by adding more and more subintervals letting the width of each
subinterval approach zero, resulting in the definite integral.

lim
n→∞

n

∑

i=1
f(x∗i )∆x = ∫

b

a
f(x)dx

Extending Concept to Calculus 3:
We now extend this idea to integrals of functions of two variables, we approximate the volume under a continuous
surface on a closed planar region.

1. Draw the planar region defined by R = [0,8] × [0,4] = {(x, y) ∈ R2
∣0 ≤ x ≤ 8,0 ≤ y ≤ 4} on z = 0 in 3-space.

Solution:

Now we approximate the signed volume of the region under a continuous function of two variables and above the
closed, bounded region R.

2. Draw the solid represented by ∬
R

12 − x − 2y dA.

Solution:
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3. Partition the regionR into four congruent rectangles with the vertices (0,0), (0,2), (0,4), (4,0), (8,0), (4,2), (8,2), (4,4),

and (8,4).. Use this partition to approximate the signed volume represented by ∬
R

12 − x − 2y dA with

Riemann sums.

Solution: We can partition the region R into four rectangles R1 = [0,4] × [0,2], R2 = [0,4] × [2,4],
R3 = [4,8] × [0,2], and R4 = [4,8] × [2,4]. To find the heights for these rectangular prisms (or rectangular
cylinders) we will find the z at each lower left corner. So we have z1 = 12−0−2(0) = 12, z2 = 12−0−2(2) = 8,
z3 = 12 − 4 − 2(0) = 8, and z4 = 12 − 4 − 2(2) = 4. Then we have the approximate volume multiplying the area
of the rectangular bases by the height of the rectangle.

V ≈ 8(12 + 8 + 8 + 4) = 256

The volume approximation will different if we use different corners or centers of the rectangles to find the
heights for the rectangular prisms.

4. Draw a “rectangular” approximation to illustrate your work from the previous problem.

Solution:

5. Is the double integral ∬
R

f(x, y)dA positive? Explain your reasoning.

Solution: Yes, the double integral is positive. If we look back to the solid we drew in Problem 2, we can
see that there is a portion of the solid that is above the xy-plane than below the xy-plane. Therefore, this
double integral should have a positive value. We can check this by computing the double integral

∬

R

12 − x − 2ydA = 128.
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We will explore a graphical interpretation of iterated integrals using the surface g(x, y) = 16 − x2 − y2 and the
region R = [0,3] × [0,2].

6. By holding x fixed to one value, we can calculate a slice of area A(x) bounded by g(x, y) and R along this
x value. Let x = 0, and calculate the area bounded by g(0, y) and [0,2].

A(0) = ∫
2

0
g(0, y)dy

Solution: A(0) = 88
3

7. Draw the area that you calculated in the previous problem, and then give it a thickness of ∆x to make it a
slab of volume A(0)∆x.

Solution:

8. Approximate the volume bounded by g(x, y) and R using four volume slabs with a base area A(x) and equal
thickness ∆x = 3

4 .

4

∑

i=1
A(xi)∆x =

Solution: V ≈
3
4
(A(0) +A(

3
4) +A(

3
2) +A(

9
4)

) =
3
4
(
88
3 +

677
24 +

149
6 +

461
24

) =
3821
32 = 119.40625

9. To get the exact volume, we need the sum of an infinite number of volume slabs with a base area A(x) and
an infinitesimal thickness dx for x from [0,3]. Write an integral to represent this volume.

Solution: ∫
3

0
∫

2

0
16 − x2 − y2 dy dx
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10. Explain why the double integral

∫

2

0
∫

3

0
16 − x2 − y2 dxdy

will also determine the exact volume bounded by the surface g(x, y) and region R, and draw a picture to
represent it.

Solution: This page first started us computing volume with the iterated integral adding slabs of solids
parallel to the y-axis. Now our the order of our iterated integral has reversed, resulting in the addition of
slices of solids running parallel to the x-axis. This idea is illustrated in the following picture:

Now returning to the value of the double integral. Notice that the solid represented by the double integral
is the following:

Then ∫
2

0
∫

3

0
16 − x2 − y2 dxdy = 70
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11. Shade the solid whose volume is given by the integral ∫
4

0
∫

4

0
16 − x2 − y2 dxdy.

12. Now write a double integral to represent the volume of the solid bounded by the function f(x, y) = 16−x2−y2

and the xy-plane located in the first octant.

Solution: ∫
4

0
∫

√
16−x2

0
16 − x2 − y2 dxdy

13. Evaluate your integral enough to identify what techniques of integration you need to use to solve.

Solution: This integral will require a combination of trig substitution and u/du substitution. The
integration is possible, but it is a bit intensive. There is a better way to calculate this volume using double
integrals.

14. Is there another coordinate system that may result in simpler integration?

Solution: By using polar coordinates the integration and bounds are much simpler.

∫

4

0
∫

π/2

0
(16 − r2)r dθ dr

We need to be careful to include the factor r.
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