1. We begin by reviewing standard examples of parameterizing curves in the plane and curves in space. This is a skill you will need and return to throughout the semester. Find a parameterization for each of the following curves.

$$
\begin{aligned}
& \left\{\begin{array}{l}
x(t)=3 \cos t \\
y(t)=\underline{3 \sin t} \\
z(t)=\underline{t}
\end{array}\right. \\
& \underline{0} \leq t \leq \underline{6 \pi}
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
x(t)=3 \cos t \\
y(t)=\underline{3 \sin t} \\
z(t)=\underline{3 \cos 2 t} \\
\underline{0} \leq t \leq \underline{2 \pi}
\end{array}\right. \\
&
\end{aligned}
$$

2. Now we will learn how to parameterize surfaces. Here's the idea:

You already know that a curve in the $x y$-plane can be parameterized by two functions $x(t)$ and $y(t)$, along with a domain for the parameter t. And you already know that a curve in space can be parameterized by three functions $x(t), y(t), z(t)$, along with a domain for the parameter t. As your parameter t varies over the domain, every point on the curve is traced. A curve lying in the plane or in space is essentially one-dimensional, since you can think of it as a deformed line. This is why we use only one parameter t to trace a curve.
On the other hand, a surface is essentially two-dimensional, since you can think of it as a deformed plane. When we parameterize a surface, we need to trace each point in essentially two dimensions. So to fill up the surface, we need to use two parameters. We often call these parameters u and v. So to parameterize a surface we need three functions $x(u, v), y(u, v)$ and $z(u, v)$, along with domains for the two parameters u and v. If you are parameterizing using polar or spherical coordinates, it is common to use any of r, θ, ρ or ϕ as the parameters instead of u and v.
On the next page, find parameterizations for each of the surfaces shown. Where it is helpful, you are asked to draw a "top-view" of the surface.
(a) The surface shown below is a half-disk of radius 3 lying at a height of $z=2$. This is most easily parameterized using polar coordinates, so we will call the parameters r and θ.

$$
\begin{aligned}
& \left\{\begin{array}{l}
x(r, \theta)=\underline{r \cos \theta} \\
y(r, \theta)=\underline{r \sin \theta} \\
z(r, \theta)=\underline{2}
\end{array}\right. \\
& \begin{array}{l}
0 \leq r \leq 3 \\
0 \leq \theta \leq \pi
\end{array}
\end{aligned}
$$

(b) The surface below is a paraboloid of revolution. The top-view is a disk of radius 2 .

$$
\begin{aligned}
& \left\{\begin{array}{l}
x(r, \theta)=\underline{r \cos \theta} \\
y(r, \theta)=\underline{r \sin \theta} \\
z(r, \theta)=\underline{r^{2}} \\
0 \leq r \leq 2 \\
\underline{0} \leq \theta \leq \underline{2 \pi}
\end{array}\right.
\end{aligned}
$$

(c) The surface below is a paraboloid of revolution. This time the variables x and y are each restricted to between -2 and 2. Hint: much like the cube root example on the previous page, in which you knew the formula for the function, just let $x=u$ and $y=v$.

$$
\begin{aligned}
& \left\{\begin{array}{l}
x(u, v)=u \\
y(u, v)=\underline{v} \\
z(u, v)=\underline{u^{2}+v^{2}} \\
-2 \leq u \leq 2 \\
-2 \leq \underline{2} \leq
\end{array}\right.
\end{aligned}
$$

(d) The surface below is a hemisphere of radius 3. Parameterize it in two different ways, once using cylindrical coordinates and once using spherical coordinates.

$$
\begin{aligned}
& \left\{\begin{array}{l}
x(r, \theta)=r \cos \theta \\
y(r, \theta)=\frac{r \sin \theta}{\sqrt{9-r^{2}}} \\
z(r, \theta)=\underline{3}
\end{array}\right. \\
& \begin{array}{l}
0 \leq r \leq \frac{3}{0} \leq \theta \leq \underline{2 \pi}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
x(\theta, \phi)=3 \sin \phi \cos \theta \\
y(\theta, \phi)=3 \sin \phi \sin \theta \\
z(\theta, \phi)=\underline{3 \cos \phi} \\
\underline{0} \leq \theta \leq \underline{2 \pi} \\
\underline{0} \leq \underline{\frac{\pi}{2}}
\end{array}\right.
\end{aligned}
$$

(e) The surface below is a cylinder of radius 3 and height 2 .

$$
\begin{aligned}
& \left\{\begin{array}{l}
x(\theta, z)=3 \cos \theta \\
y(\underline{\theta}, \underline{z})=3 \sin \theta \\
z(\underline{\theta}, \underline{z})=\underline{z}
\end{array}\right. \\
& 0 \leq \underline{\theta} \leq 2 \pi \\
& 0 \leq \underline{z} \leq \underline{2}
\end{aligned}
$$

