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1 Introduction

These notes are meant to be a self-contained, modern, simple and concise treat-
ment of the very classical correspondence between quadratic forms and ideal
classes. In my personal mental landscape, this correspondence is most naturally
mediated by the study of complex lattices. I think taking this perspective breaks
the equivalence between forms and ideal classes into discrete steps each of which
is satisfyingly inevitable. These notes follow no particular treatment from the
literature. But it may perhaps be more accurate to say that they follow all of
them, because I am repeating a story so well-worn as to be pervasive in modern
number theory, and nowdays absorbed osmotically.

These notes require a familiarity with the basic number theory of quadratic
fields, including the ring of integers, ideal class group, and discriminant. I
leave out some details that can easily be verified by the reader. A much fuller
treatment can be found in Cox’s book Primes of the form x2 + ny2.

2 Moduli of lattices

We introduce the upper half plane and show that, under the quotient by a natural
SL(2,Z) action, it can be interpreted as the moduli space of complex lattices.

The upper half plane is defined as the ‘upper’ half of the complex plane,
namely

h = {x+ iy : y > 0} ⊆ C.

If τ ∈ h, we interpret it as a complex lattice Λτ := Z+τZ ⊆ C. Two complex
lattices Λ and Λ′ are said to be homothetic if one is obtained from the other
by scaling by a complex number (geometrically, rotation and dilation). In this
case we write Λ ∼ Λ′.

If we are given a lattice Λ = αZ + βZ, then up to homothety, it can be
written as Z + τZ for τ = β/α. By interchanging α and β, we can guarantee τ
has positive real part. Therefore, every lattice, up to homothety, is represented
by some τ ∈ h.

However, many different τ give the same lattice. For example, τ and τ + 1
clearly give the same lattice: this is essentially a change of basis. To address
this, we define the natural action of SL(2,Z) on the upper half plane1, as follows:(

a b
c d

)
· τ =

aτ + b

cτ + d
. (1)

1The fact that SL(2,Z) stabilizes the upper half plane is due to the determinants being 1
and never −1, which would flip to the lower half plane.
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Geometrically, this is the action of Möbius transformation2. Some important
Möbius transformations include translation by 1 and inversion in the unit circle:

T =

(
1 1
0 1

)
, τ 7→ τ + 1,

S =

(
0 −1
1 0

)
, τ 7→ −1/τ.

Proposition 1. Λτ ∼ Λτ ′ if and only if τ ′ = M · τ for some M ∈ SL(2,Z).

Proof. The key to the proof is that M implements a change of basis on the
lattice, which alters τ but does not change the lattice. To see this explicitly,
witness that

ΛM ·τ = Z +
aτ + b

cτ + d
Z ∼ (cτ + d)Z + (aτ + b)Z = Z + τZ. (2)

Conversely, if τ and τ ′ give the same lattice, then Z + τZ ∼ Z + τ ′Z, which
induces the relationship that

α = c+ dτ, ατ ′ = a+ bτ

for some α ∈ C. This is exactly the relationship (1).

We have now shown that the upper half plane, under the quo-
tient by the action of SL(2,Z), is the moduli space of lattices up to
homothety.

A fundamental domain is given by

F := {z ∈ h : −1/2 ≤ |Re(z)| ≤ 0, |z| ≥ 1}∪{z ∈ h : 0 < |Re(z)| < 1/2, |z| > 1}.

The fact that this is a fundamental domain, i.e. every SL(2,Z)-orbit contains
exactly one element of this set, is elementary, but somewhat lengthy. It ap-
pears in many books. Among those in frequent rotation for me, is Chapter
35 of Voight’s Quaternion Algebras; another is the first chapter of Silverman’s
Advanced Topics in the Arithmetic of Elliptic Curves; there are many others.

Note that the matrix −I acts trivially, so it is sometimes useful to think
about the action of PSL(2,Z) := SL(2,Z)/ ± I, which is faithful. One thing
worth saying about the full story is that PSL(2,Z) is generated by the matrices
S and T defined above. It is worth looking at the image of the fundamental
domain and its images under small words in S and T in either of the references
mentioned above.

2I recommend viewing the Möbius Transformations Revealed as an introduction to this
topic more generally
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3 Ideal Classes as K-Lattices

We show that ideal classes of imaginary quadratic fields can naturally be inter-
preted as complex lattices up to homothety.

I assume basic familiarity with ideal classes in the rings of integers of number
fields. For the remainder of these notes, K is an imaginary quadratic field.

The embeddings of K into C can be obtained by extending scalars: C ∼=
R ⊗Q K. The metric topology induced by C on K agrees with that of K as a
Q-vector space. The salient point is that lattices of K are still lattices in C.
This doesn’t work for real quadratic fields or higher degree fields. We just get
lucky here.

Recall that fractional ideals are, in particular, lattices in K. Therefore we
may think of them as complex lattices generated by elements of K. Taking into
account homothety, we arrive at the following definition.

Definition 1. A complex lattice Λ = αZ+βZ is called a K-lattice if β/α ∈ K.

This property is insensitive to the choice of basis of the lattice, since if
α′ = aα + bβ, β′ = cα + dβ, then α/β ∈ K if and only if α′/β′ ∈ K (i.e.
the SL(2,Z) action on h takes K to K). Furthermore, being a K-lattice is
an invariant under homothety. It is always possible to scale so that α, β ∈ K
individually (e.g., take 1 and β/α as basis).

Finally, any K-lattice can be scaled to lie as a sublattice of OK . To see this,
write Λ = αZ + βZ, for α, β ∈ K. The ideal (α, β) is a fractional ideal, and so
there is some d ∈ OK such that d(α, β) ⊆ OK . Then3 dΛ ⊆ OK .

Hence, the K-lattices are exactly those which arise from τ ∈ K, under the
theory of the upper half plane.

Next we wish to discuss the endomorphisms of a lattice; the collection of
such is called the order.

Definition 2. The order of a K-lattice is

ord(Λ) = {x ∈ C : xΛ ⊆ Λ}.

The order of a lattice is clearly invariant under homothety. It is also in-
sensitive to any choice of basis for the lattice, hence ord(Λτ ) = ord(ΛM ·τ ) for
M ∈ SL(2,Z), i.e. it is invariant under the SL(2,Z) action. So an element τ ∈ h
can be said to have an order.

Proposition 2. The order ord(Λ) is a subring of OK with unity.

Proof. First, ord(Λ) ⊆ K, since, applying x ∈ ord(Λτ ) to the first basis element
1, we have x ∈ Λτ ⊆ Q(τ) ⊆ K. The only difficult aspect is that ord(Λ) ⊆
OK . By homothety, we may assume Λ ⊆ OK . Therefore if x ∈ ord(Λ), then
xnΛ ⊆ Λ ⊆ OK for all positive integers n. Choosing λ ∈ Λ, we have λxn ∈ OK
for all n, which means that OK [x] is a fractional ideal, hence finitely generated,

3Warning: Λ need not equal (α, β) (one is a Z-span of a basis, and the other an OK -span,
hence there is a one-way inclusion).
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implying x is integral. Hence ord(Λ) ⊆ OK . Finally, that it is a subring with
unity is clear.

We will focus this exposition on the case of lattices with order OK , but there
is a rich theory when one includes other orders.

Proposition 3. Fix an embedding of K into C. Under the embedding, every
fractional ideal of OK is a K-lattice with order OK . Furthermore, any K-lattice
can be scaled to lie in K, and it has ord(Λ) = OK if and only if any such scaling
is a fractional ideal of OK . Two K-lattices with order OK are homothetic if and
only if the corresponding fractional ideals are equivalent.

Proof. A fractional ideal I is naturally a K-lattice, and it has order OK by the
definition of an ideal. Conversely, consider a K-lattice Λ with ord(Λ) = OK .
It is an OK-module, and finitely generated, hence a fractional ideal if scaled to
lie in K. The ideals I1 and I2 are equivalent if and only if I1 = dI2 for some
d ∈ K; this is exactly homothety.

The following restatement is an immediate corollary.

Corollary 1. Ideal classes of OK are in bijection with K-lattices of order OK ,
up to homothety. The identification is obtained by considering an ideal class as
a complex lattice under a fixed embedding of K in C.

We use the notation Cl(K) for the ideal class group of OK .
Finally, we record a useful lemma for later.

Lemma 1. Suppose τ is a complex root of a polynomial ax2 + bx + c ∈ Z[x]
where gcd(a, b, c) = 1. Then ord(Λτ ) = Z[aτ ].

Proof. We verify that aτΛτ = τZ + τ2Z ⊆ Z + τZ because τ satisfies aτ2 =
−bτ − c. This shows Z[aτ ] ⊆ ord(Λτ ). Conversely, suppose α = e + fτ for
e, f ∈ Q. Then the endomorphism multiplication-by-α has matrix (in basis 1
and τ), (

e −cf/a
f e− bf/a

)
.

The condidition that αΛτ ⊆ Λτ is exactly the condition that the entries be
integral. As gcd(a, b, c) = 1, we find that a | f . So ord(Λτ ) ⊆ Z[aτ ].

4 Quadratic forms as K-Lattices

In this section, we interpret primitive integral binary quadratic forms of funda-
mental discriminant ∆ up to proper equivalence as Q(∆)-lattices up to homoth-
ety.

Definition 3. An integral binary quadratic form is an expression ax2+bxy+cy2

in Z[x, y]. The discriminant of the form is ∆ = b2 − 4ac. If ∆ < 0, the form is
definite. It is called primitive if gcd(a, b, c) = 1.
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It is a fact of the theory of quadratic forms that definite forms take only
values of a single sign. This is a consequence of the fact that, over R, any
binary quadratic form can be diagonalized4; the discriminant is negative if and
only if the diagonalization is x2 +y2 or −x2−y2. If the former, we call it positive
definite (otherwise, predictably, negative definite).

One of the fundamental questions number theory seeks to answer is: What
are the values taken by (represented by) a quadratic form? It is natural to
consider quadratic forms up to change of variables, which shouldn’t change the
set of values a form represents. To this end, we define an action of SL(2,Z).

Definition 4. Let M ∈ SL(2,Z). Then, M acts on vectors in Z2. Writing v =
(x, y) for the vector of indeterminates, considered a column vector, a quadratic
form f(x, y) can be given an action by M :

M · f(v) = f(M · v).

Two integral binary definite quadratic forms f(x, y) and g(x, y) are properly
equivalent if they are in the same orbit. In that case we write f ∼ g.

Explicitly, this is(
a b
c d

)
· f(x, y) = f(ax+ by, cx+ dy).

The action of SL(2,Z) doesn’t change the discriminant of the form (this is simply
a computation). Therefore we may define the form class group Cl(∆) to be the
set of proper equivalence classes of primitive integral binary quadratic forms of
discriminant ∆.

Quadratic forms also give rise to complex lattices, although the association
is slightly less obvious. A quadratic form f(x, y) = ax2 + bxy + cy2 has an
associated polynomial ax2 + bx + c (by setting y = 1). If ∆ < 0, it has an
associated pair of non-real complex conjugate roots τf , τf , namely

−b±
√

∆

2a
. (3)

Let us assign these in such a way that τf ∈ h. Note that the minimal polynomial
of τf has discriminant ∆, which implies Z[τf ] has discriminant ∆.

Proposition 4. Let ∆ be a negative integer5. There is an SL(2,Z)-equivariant
bijection between primitive integral binary quadratic forms f of discriminant ∆
and quadratic irrationalities τf of discriminant ∆. The equivariance is given by
τM ·f = M−1(τf ).

Proof. We have seen how to associate to f an element τf in the upper half plane
which is a root of f(x, 1). To invert this, one takes the minimal polynomial of

4Here I mean the Gram matrix.
5If ∆ ≡ 2, 3 (mod 4), this bijection is vacuous.
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τf (which is quadratic) and homogenizes to reintroduce the variable y. There’s
a small hitch here: any scaling of the quadratic form (i.e. λf in place of f) will
produce the same τf . So one must choose the primitive form amongst the scalar
multiples.

We must also show that the action of SL(2,Z) on integral binary positive
definite quadratic forms f is equivariant with the inverse action of SL(2,Z) on
the root τf , explicitly, τM ·f = M−1(τf ). This is a computation, so we omit the
proof, but, for example, τa(x−1)2+b(x−1)+c = τax2+bx+c + 1.

Before we state the corollary giving a bijection between forms and lattices,
we pause because we prefer to restrict our attention to K-lattices of the maximal
order OK . The following definition will be useful for characterizing discrimi-
nants associated to the maximal order.

Definition 5. A discriminant ∆ is fundamental if it is of the form ∆ = 4m
for m ≡ 2 or 3 (mod 4) and squarefree, of the form ∆ = m for m ≡ 1 (mod 4)
squarefree.

It is a fact that these correspond (except for ∆ = 1) bijectively to quadratic
number fields, as the discriminants of their rings of integers. (Non-fundamental
non-square discriminants give other orders6, i.e. full-rank subrings of OK with
unity.)

Now we can state the corollary.

Corollary 2. Let ∆ be a negative fundamental discriminant associated to quadratic
imaginary field K. There is a bijection between proper equivalence classes of
integral binary quadratic forms of discriminant ∆ and homothety classes of K-
lattices of order OK .

Proof. From Proposition 4, there’s a bijection between such forms and τf being
quadratic of discriminant ∆ in the upper half plane, taken modulo SL(2,Z).

Once we have associated τf to f , one also has an associated K-lattice

Λf := Λτf .

This lattice has order Z[aτf ] (by Lemma 1), which has discriminant7 ∆. There-
fore, since ∆ is fundamental, it is a K-lattice of order OK .

Conversely, any K-lattice Λ of order OK is, up to homothety, of the form
Λ = Z + τZ where τ ∈ K. Therefore τ is quadratic, and we have just seen that
the discriminant of τ matches the discriminant of its order. If Λ = Λτf then
τf ∼ τ and so this is a bijection.

6These are also all the orders obtained from lattices as in Definition 2.
7In general, the discriminant of a power basis is the discriminant of the minimal polynomial.

Hence the discriminants of a general polynomial f of degree n and of the power basis of its
root τ are related by disc(f) = an disc(1, α, . . . , αn−1).
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5 Quadratic forms and ideal classes

We now state the full bijection. We let K be an imaginary quadratic field with
discriminant ∆K .

Theorem 1. We have bijections

Cl(K) ↔ {K-lattices of order OK}/ ∼ ↔ Cl(∆K)

given by (left to right),

a 7→ Λa = αZ + βZ 7→ N(αx− βy)/N(a). (4)

and by (right to left),

ax2 + bxy + cy2 7→ Λf = Z +
−b+

√
∆

2a
Z 7→

(
a,
−b+

√
∆

2

)
(5)

Proof. The bijection is given by Corollaries 1 and 2, wherein we find the explicit
maps. Tracing through these, it is easy to see the explicit map in the right-to-left
direction, namely (5).

For the inverse, we pass from a K-lattice Λa = αZ + βZ representing an
integral ideal a, to the corresponding quadratic form, which should arise from the
minimal polynomial for β/α. One slick way to obtain this minimal polynomial
is to recover it as the characteristic polynomial of endomorphism x 7→ (β/α)x
on K, i.e. det(Ix−mβm

−1
α ) = N(αx− βy)/N(α).

Thus the inverse map should be

a 7→ Λa = αZ + βZ 7→ κN(αx− βy), (6)

where κ needs to be specified.
To set κ and verify that we obtain an inverse, we use a nice choice of lattice

homothety. Assume β/α satisfies the polynomial ax2 + bx + c ∈ Z[x] with
gcd(a, b, c) = 1. Then,

αZ + βZ ∼ aZ +
−b+

√
∆

2
Z.

The rightmost coefficient, call it γ, is an algebraic integer generating OK (it

has minimal polynomial x2 + bx+ b2−∆
4 of discriminant ∆), and this lattice has

covolume a inside OK = Z + γZ.
We compute

N

(
ax− −b+

√
∆

2
y

)
N

((
a,
−b+

√
∆

2

))−1

=

(
a2x2 + abxy +

b2 −∆

4
y2

)
a−1

= ax2 + bxy + cy2.
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Hence, the correct scaling is more canonically given as

N(αx− βy)

N(a)
,

which is clearly invariant under homothety.
Thus the inverse to (5) is therefore (4).

6 Finiteness of the class group

We now briefly indicate a few payoffs. Given a quadratic form f , we can apply
the action of SL(2,Z) to place τf in the fundamental domain. This gives a re-
duction theory, i.e. an algorithm that replaces f with a canonical representative
of its equivalence class. Working this out explicitly, we obtain

Proposition 5. Let f(x, y) = ax2 + bxy + cy2. Then τf ∈ F if and only if
|b| ≤ a ≤ c with b ≥ 0 whenever |b| = a or a = c.

Such a form is called reduced. In particular, this implies that for fixed dis-
criminant ∆ = b2− 4ac, there are only finitely many reduced forms (to see this,
note that |∆| ≥ 3a2 and so there are finitely many choices for a and b; but any
such choice determines at most one c).

We write Cl(∆) for the set of equivalence classes of quadratic forms of dis-
criminant ∆. We have just shown that |Cl(∆)| < ∞. Via the bijection, this
immediately implies |Cl(K)| <∞.

7 Composition of Quadratic Forms

Since the class group comes with a group operation, so must the set of equiva-
lence classes of quadratic forms, inherited through this bijection. The composi-
tion of quadratic forms was actually observed long ago, before class groups. An
example of this sort of thing is the identity

(a2 + b2)(c2 + d2) = (ac− bd)2 + (ad+ bc)2,

which is essentially the multiplicativity of the Gaussian norm, but which we can
now interpret as the identity (1)(1) = (1) in the class group of Z[i]. A general
composition law that lines up with this story can be found in Cox’s book Primes
of the form x2 + ny2. Or you can derive it yourself from the bijection above.
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