
Algebraic Number Theory Spring 2023

Homework List
April 28, 2023

http://math.colorado.edu/∼kstange/ click “Teaching;” also on canvas.
Advice: Please focus on the problems most appropriate to you (the ones you

will learn something from). Aim to do at least 6 problems for a given due date.
Many of these problems have solutions you can find in your texts or online.
Give them a fair shake, but it’s ok to learn solutions from elsewhere if you own
them (learn them so you can authentically recreate them). (You are your own
best guide to what helps you learn best.) When called upon, you can present
anything that hasn’t already been presented.

1 For Friday, Feb 3.

1. (Recommended). In class, we only sketched the steps to find all integer
solutions to x3 − y2 = 1. Fill out the details. Note: the solution to this is
in Baker’s notes, page 3.

2. Solve the Diophantine equation x3 − y2 = 2. (Hint: do the previous
problem first.)

3. Show that x4 + y4 = z4 has no nontrivial solutions. Hint: instead, show
x4 +y4 = z2 has no nontrivial solutions by writing it as (x2)2 +(y2)2 = z2

and using the well-known parametrization of pythagorean triples. More
specifically, show that if there’s one solution, then there’s another with
smaller z (see the problem? this idea is called “infinite descent”). This
exercise is elementary (it requires messing around with equations and par-
ities), but not totally trivial. This case of FLT is originally due to Fermat
himself.

4. What is the appropriate “norm” function for Z
[

1+
√
−3

2

]
? What makes it

appropriate?

5. Show that Z
[

1+
√
−3

2

]
is a Euclidean domain, hence a UFD.

6. Classify the splitting possibilities for rational primes p as elements of

Z
[

1+
√
−3

2

]
. (Hint: this is a sixth root of unity.)

7. Prove that over an infinite field, no finite collection of proper subspaces
can cover a vector space. What about finite fields?

8. Prove that Z[
√

10] is not a UFD (Hint: try factoring 6).

9. Try to complete as much as you can of the Kummer/Lamé “proof” of
FLT in the prime case, under the strong (and false!) assumptions that
Z[ζp] is a UFD and the only units are exactly ±ζkp . The solution can
be found on page 6 of Baker’s notes. You can read about the history of
Lamé/Kummer’s proofs here: https://www.jstor.org/stable/41133432.
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10. Find all the algebraic integers in Q(
√
d). (Verify: in Q(i) you should get

Z[i] and in Q(
√
−3) you should get Z

[
1+
√
−3

2

]
.)

11. Show that a UFD is integrally closed (solution on page 693 of Dummit
and Foote). Hint: use the fact that an element of the field of fractions can
be written in ‘lowest terms’.

12. Show that Z[i] is integrally closed directly; show that any proper subring
of Z[i] is not integrally closed (these all contain 1, mind).

13. If α is an algebraic integer, then its minimal polynomial is in Z[x] (solution
is Lemma 1.12 in Baker).

14. Finish the argument to determine the ring of integers of Q( 3
√

2).

2 For Friday, February 17th.

1. Use the proof that integrality of an element is equivalent to finite gener-
ation of a certain module (from class notes or Baker’s notes) to find the
minimal polynomial of 3

√
2 + 1. Verify it.

2. Prove that α is an algebraic integer if and only if its minimal polynomial
has coefficients in Z. (Note: This is Lemma 1.12 in Baker’s Notes).

3. We showed that if L/K is an extension of perfect fields, then the norm,
trace, and characteristic polynomial of α ∈ L are given in terms of the
embeddings of L into K. In this proof, we first assumed L = K(α). We left
the general case as an exercise. Complete the proof. Hint: show the matrix
for mα on L is block diagonal, where the blocks are the corresponding
matrix for K(α).

4. There are two definitions of the ring of algebraic integers of a number field.
One is relative, as follows. Let OK be the ring of integers of the number
field K. Then the ring of integers OL of an extension L/K is the integral
closure of OK in L. The other definition is global: the ring of integers OL
of L is the intersection of the ring of all algebraic integers (i.e. elements
integral over Z) with the field L. Prove that these define the same OL.

5. Suppose α and β are quadratic (i.e. degree 2 minimal polynomials). De-
termine the minimal polynomial of α+ β in terms of the of α and β.

6. Show that
√

3 is not an element of Q(α) where α is a fourth root of 2 (i.e.
α4 = 2). Hint: start by using the minimal polynomial to compute trace.
(Note: This is from Marcus, Chapter 2; more of a hint there.)

7. Find a cubic field Q(α) where Z[α] ( OK . Possible method: modify the
example we did in class computing the ring of integers of Q( 3

√
2).
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8. Consider the field K generated by a root α of minimal polynomial x3 −
x2−4x−1. Let β = 1/(α+1). Find the matrix representing multiplication
by β, and its trace, norm and characteristic polynomial. Conclude that
α+ 1 is invertible in OK .

9. We have defined the trace and norm maps for field extensions. Suppose
we have a stack of field extensions K ⊂ M ⊂ L. What is the relation-
ship between the maps trL/M and trM/K and trL/K? What about the
relationship between NL/M , NL/K and NM/K?

10. Show that any commutative ring with identity has at least one maximal
ideal.

11. Show that in a Noetherian ring R, a subset is a fractional ideal if and only
if it is a finitely generated R-submodule.

12. Show that if I and J are fraction ideals, so are IJ , I ∩ J , and I + J .

13. Let I = (1 + i)Z[i], an ideal of the Gaussian integers. Find I−1 explicitly.

14. Do the same as above, but with I = (3, 1 +
√
−5) in Z[

√
−5].

15. Find the ring of integers of Q(
√

2,
√

3).

16. Let R = Z[
√
−3], and let I be the ideal of R generated by 2 and 1 +

√
−3.

(a) Show that I2 = (2)I but I 6= (2). Conclude that proper ideals in R
do not factor uniquely into products of prime ideals.

(b) Show that I is the unique prime ideal of R containing (2). Conclude
that the ideal (2) cannot be written as a product of prime ideals of
R.

(c) Why do parts (a) and (b) above not contradict the theorem which
says that every Dedekind domain admits unique factorization of proper
ideals into products of prime ideals?

17. (a) Prove that a PID that is not a field is a Dedekind ring.

(b) Prove that a Dedekind ring is a UFD if and only if it is a PID.

18. Compute the discriminant of Z[ 3
√

2] in as many different ways as you can.

19. Which of the following are Dedekind rings?

(a) C[X,Y ]/(Y 2 −X3)

(b) R = {ab ∈ Q : a, b ∈ Z, 3 - b}

20. Compute the discriminant of α, i.e. disc(1, α, α2, α3), where α has minimal
polynomial x4 + ax+ b.

3



3 For Friday, March 3th.

1. In class, we proved that a Dedekind domain R has unique factorization
of ideals. One step was to show that for a prime ideal p, p−1 6= R. The
proof was constructive; work through the proof to demonstrate it with
p = (2, 1 +

√
−5) in the ring R = Z[

√
−5].

2. Learn what a Bhargava cube is and give a ten minute presentation on this
topic. The best reference is the original reference: read up to the end of
Section 2.3 in https://annals.math.princeton.edu/2004/159-1/p03.

3. Show that the class number of the Gaussian integers is 1, by finding the
complete list of reduced primitive integral binary quadratic forms of dis-
criminant -4.

4. Let R be a Dedekind domain. Suppose p and q are distinct non-zero
primes.

(a) Show that p and q are coprime, i.e. p + q = R.

(b) Show that for any positive exponents s, t ∈ Z, ps and qt are coprime.

(c) What aspect of this fails for a non Dedekind domain?

5. This example is due to Dedekind. Consider the field K = Q(α) where α
has minimal polynomial x3 + x2 − 2x+ 8. In the ring of integers, one can
verify that

2 =

(
1− 1

2
α+

1

2
α2

)(
−3 + 2α− α2

)(
−4 +

5

2
α− 3

2
α2

)
Furthermore, each of these three elements has norm 2. From these facts,
prove that K is non-monogenic (not just that OK 6= Z[α]). Hint: Assume
it is and use Kummer’s Theorem. Can one generalize this strategy?

6. Consider the extension K = Q(α) where α has minimal polynomial α3 =
α+ 1. You may use the fact that OK = Z[α].

(a) Split the prime 23. By splitting, I mean break it into prime ideals,
given explicitly, and determine which of these are equal and which
are coprime.

(b) Verify the ei, fi and their expected relationship to n.

(c) Give the explicit maps from OK to the finite fields corresponding to
each prime.

7. (This is Marcus, Chapter 3, Exercise 9 among other places (it’s very stan-
dard)). Let K ⊂ L be number fields. Let a, b ⊂ OK be ideals. One can
naturally extend these ideals to ideals aOL and bOL of OL, by taking the
ideal generated by their elements in the larger ring.

(a) Show that if aOL | bOL, then a | b.
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(b) Show that a = aOL ∩ OK .

(c) Which ideals C of OL satisfy C = (C ∩ OK)OL?

8. Show that any ideal in a Dedekind domain can be generated by at most
2 elements (There’s a hint in Baker, Chapter 2 Exercise 4).

9. In class, we proved that when we split a prime p ∈ Z in a number field
K, we have

∑
eifi = n (see the details from the notes). State and prove

a more general version of this for a relative extension K ⊂ L of number
fields. This will require generalizing definitions. (For reference, Marcus
does this in Chapter 3, Theorem 21; you can approach this as an exercise
or an expositional task depending how much you decide to depend on
him.)

10. If you’ve done or understand the previous exercise, then explain and verify
that ei’s and fi’s “multiply in towers”.

11. Determine the full class group of Q(
√
−14), including the class group

structure. Find a corresponding quadratic form and ideal representative
of each class. (You may be able to do this with quadratic forms - not sure
how messy it gets - or you may wish to use the Minkowski bound we’ll see
in class.)

12. I left some details out of the quadratic forms and ideal classes correspon-
dence. Fill in those details.

4 For Friday, March 17th.

1. Find a congruence condition on primes p that determined whether they
are represented by x2 − xy + 2y2. Hint: Q(

√
−7).

2. On March 8, I gave a sketch of a proof that the primes dividing the
discriminant are exactly those which ramify. Fill in any details that are
bothering you.

3. In class I claimed the dual of the dual of a vector space is canonically
isomorphic to the original vector space. Verify this.

4. Suppose the ring of integers of K is of the form Z[α] for some α with min-
imal polynomial f of degree n. Prove that the different ideal is generated
by f ′(α).

5. Verify cancellation of fractional ideals: a
b
∼= ac

bc for fractional ideals a ⊇ b, c.

6. In class we mentioned a variety of properties of dual lattices without proof
(dual of dual is original lattice; how dual interacts with intersection and
sum, etc.). Prove some or all of these.

5



7. Consider the field K = Q( 3
√

2). Pretend we don’t already know that the
ring of integers is Z[ 3

√
2], but we do know disc(Z[ 3

√
2]) = −108.

(a) Show that (2) = ( 3
√

2)3 and (3) = ( 3
√

2 + 1)3 in OK . (Hint: unlikely
things can be units in a number ring, watch out.)

(b) Explain why this determines the ring of integers.

(c) What is the different ideal in OK .

8. Prove part 3 of Dedekind’s Theorem on the prime ideals dividing the
different (March 13).

9. Prove the following generalization of Minkowski’s Convex Body Theorem:
Let Λ ⊂ Rn be a rank n lattice. Let S ⊆ Rn be a bounded, convex,
symmetric, and compact set. If vol(S) ≥ 2nvol(Rn/Λ) then there exists
some 0 6= v ∈ S ∩ Λ.

10. Prove the following generalization of Minkowski’s Convex Body Theorem:
Let Λ ⊂ Rn be a rank n lattice. Let S ⊆ Rn be a bounded, convex, sym-

metric set. Then, |Λ∩S| ≥ vol(S)
2nvol(Rn/Λ) . Can this statement be improved?

11. Suppose you plant a tree at every nonzero lattice point of Z2 within a
radius of 13 from the origin. The trees are of diameter 0.16. You stand at
the origin. Prove that you cannot see out of this forest. (Problem stolen
from somewhere but I’m not sure where.)

5 For Friday, April 14th.

Rings are always commutative.

1. Baker, Exercise 4.16, page 92. Read Section 1.2 up to that exercise for
the relevant definitions.

2. Let p be an odd prime. Let U0 := Z∗p. Let m := pZp. Define Un := 1+mn,
which is a subset of U0. Show the following isomorphisms of groups:

U0/Un ∼= (Zp/mn)∗; Un/Un+1
∼= Zp/m ∼= Z/pZ, n ≥ 1.

Note, U1 are termed the principal units.

3. (Universal property for localization). Let R be an integral domain and S
a multiplicatively closed subset. Let h : R → S−1R be the map to the
associated localization. The exercise is to show that S−1R satisfies the
following universal property. For any other ring R′ with a homomorphism
f : R → R′ for which f(S) ⊂ (R′)∗, there is a unique homomorphism
g : S−1R→ R′ so that f = g ◦ h.
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4. Let R be an integral domain, and S be a multiplicatively closed subset.
Define

S := {r ∈ R : ar ∈ S for some a ∈ R}.
This is called the saturation of S.

(a) Show that S is a multiplicatively closed subset containing S, and

S
−1
R ∼= S−1R.

(b) Find all multiplicative sets S such that S−1Z = Q.

5. Let R be a ring, not necessarily an integral domain. In the absence of a
fraction field, we can define localization more generally as follows. Let S
be a multiplicatively closed subset (i.e. closed under multiplication and
containing 1). Define a relation on R× S by

(a, b) ∼ (c, d) if and only if s(ad− bc) = 0 for some s ∈ S.

Then S−1R is the set of equivalence classes. Write a/b for (a, b), and
define addition and multiplication for equivalence classes as for fractions.

(a) Check this is an equivalence relation and S−1R is a ring, and the
x 7→ x/1 is a homomorphism form R to S−1R (in class, only present
the interesting aspects of all these details).

(b) Explain what you get for S−1R if you let S contain 0.

(c) Localize Z/6Z at S = {1, 2, 4}. Is the map R → S−1R given above
injective?

(d) Check that the correspondence between primes in S−1R and those
of R not intersecting S (proved in class) is still valid.

6. Let R be a ring, not necessarily an integral domain. An element x ∈ R is
called nilpotent if some power xn = 0. Show that the intersection of all
prime ideals of R is the ideal consisting of all nilpotent elements. (Hints:
This can be proven using localization as defined above. In particular, given
a non-nilpotent x, we seek to find a prime not containing it. Localize at
S = {xk : k ≥ 0}. What do you learn?)

7. Let R be a ring with a multiplicatively closed set S. Let M be an R-
module. The purpose of this exercise is to define localization of M , and
show that it is actually a type of extension of scalars. To define the
localization of M at S, denoted S−1M , we use as underlying set (m, s),
denoted m/s where m ∈ M and s ∈ S, under the equivalence relation
m′/s′ ∼ m/s if and only if (m′s − ms′)u = 0 for some u ∈ S. This
is based on the general definition of localization given in the last batch
of exercises. If R is an integral domain you can eliminate u from the
definition.

(a) Show that if M is a ring extension of R, then this definition of S−1M
coincides with the usual ring definition. (This is more of an observa-
tion than anything; not real work.)
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(b) Show that S−1M ∼= S−1R⊗RM . (Hint: Use the universal property
of tensor product, i.e. start by giving a bilinear map S−1R ×M →
S−1M .)

8. Let p be a prime. Find the limit of the sequence 1/(1 + pn) in R and in
Qp. Are the limits rational? The same?

9. Let p be a prime. Prove that addition and multiplication are continuous
as maps Qp ×Qp → Qp.

10. Baker, Exercise 5.33 (page 128).

11. Baker, Exercise 5.36 (page 129).

6 For Friday, April 28th.

1. (Hensel’s Lemma Practice)

(a) Solve x3 − x− 2 in Q2.

(b) Let p be a prime. Let n not be divisible by p. Show that there is a
unique n-th root of unity ζ in Zp such that ζ ≡ 1 (mod p).

(c) Let p be a prime. Find all solutions of xp − x = 0 in Zp and in Qp.

2. (Some details of the
∑
fe = n proof from class.) Suppose B is a finite

ring extension of A, both Dedekind domains. Let S = A\p for some prime
ideal p. Let q be a prime of B above p. Suppose that pB =

∏
qeii .

(a) Show that S−1q is prime and lies above S−1p.

(b) Show that S−1pB =
∏
S−1qeii .

(c) Show that B/qi ∼= S−1B/S−1qi.

(d) Show that [B : A] = [L : K] = [B/pB : A/p] (Exercise 4.28 in Baker;
hint there.)

3. Baker, exercise 4.31, page 100.

4. The following we stated but did not prove in class, and the answer can
be found in Baker’s notes, Proposition 4.36. It’s a nice thing to work out
yourself though, to solidify all those definitions:

(a) Prove that the decomposition field is the largest intermediate field
for which e = f = 1.

(b) Prove that the intertia field is the largest intermediate field for which
e = 1.

5. Work out the decomposition group and inertia group for all primes in
quadratic extensions.
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6. Work out the decomposition and inertia groups for the prime 2 in the
splitting field K of x3−2 over Q. Work out the decomposition and inertia
fields. Check how 2 splits as you go up through the tower. Can you work
it out for other primes?

7. Find the Dirichlet density of primes with legendre symbol
(
D
p

)
= 1 for

any integer D. (You may use big theorems.)

8. If a natural number n is a square mod p for a set of primes p having
Dirichlet density 1, then n must be a square. (You may use big theorems.)

9. More maybe?
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