MATHEMATICS 2001 – EXISTENCE PROOF PUZZLES!

It's puzzle time! The goal today is to produce some nicely-written proofs.

Theorem 1. There exists a set of any finite cardinality.

Correction: There exists a set of any non-negative finite integer cardinality.

Proof. Let n be a non-negative integer. We will create a set that has cardinality n. Let

$$S = \{1, 2, \dots, n\}$$

Then |S| = n.

Theorem 2. Every odd integer is the sum of two consecutive integers.

Proof. Let n be an odd integer. Then n = 2m+1 for some integer m. Then consider the consecutive integers m and m+1. Then n is their sum, since

$$m + (m+1) = 2m + 1 = n.$$

Theorem 3. Every odd integer is the difference between two consecutive perfect squares.

Proof. Let n be an odd integer. Then n = 2m + 1 for some integer m. Consider the consecutive perfect squares m^2 and $(m + 1)^2$. Then their difference is

$$(m+1)^2 - m^2 = m^2 + 2m + 1 - m^2 = 2m + 1 = n.$$

Theorem 4. There are arbitrarily large gaps in the sequence of prime numbers.

Proof. To prove this, we will demonstrate a gap of size n. To do so, consider the integer $(n + 1)! = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdots n \cdot (n + 1)$.

Then (n + 1)! is divisible by 2, 3, ..., n, n + 1. Let k be any of these n different integers. Then the integer m := (n + 1)! + k is divisible by k, but is bigger than k, hence k is not 1 or m. Hence it is composite. Therefore the n consecutive integers

$$(n+1)! + 2, (n+1)! + 3, (n+1)! + 4, \dots, (n+1)! + (n+1)$$

are all composite.

Theorem 5. Between any two irrational numbers, there is a rational number.

Correction: Between any two distinct irrational numbers, there is a rational number.

Proof. Let α and β be two distinct irrational numbers. Then they each have decimal expansion:

$$\alpha = a + 0.a_0 a_1 a_2 \dots$$
$$\beta = b + 0.b_0 b_1 b_2 \dots$$

where $a, b \in$ and the a_i and b_i represent the digits. Note that these expansions must continue forever.

Suppose without loss of generality that $\alpha > \beta$. Then, either a > b or a = b. If a > b, then a is an integer satisfying $\beta < a < \alpha$, and we are done.

So, suppose that a = b. Then, since $\alpha \neq \beta$, at some point their decimal expansions disagree for the first time. That is, $a_i = b_i$ for i < I, and then $a_I > b_I$. In that case the rational number $a + 0.a_1a_2...a_I$ lies strictly between α and β .