Properties of Cardinality

April 2, 2020

Definition 1. Two sets A and B are said to have the same cardinality (written |A| = |B|) if there exists a bijective function $f : A \to B$. Otherwise, they are said to have different cardinalities (written $|A| \neq |B|$).

Definition 2. Let $n \in \mathbb{Z}$. If a set A has the same cardinality as $\{1, 2, 3, ..., n\}$, then we say it has cardinality n and write |A| = n.

Theorem 1. $|\{a, b\}| = 2$.

Proof. There is a bijection between $\{a, b\}$ and $\{1, 2\}$ given by f(a) = 1, f(b) = 2.

Theorem 2. $|\mathbb{Z}| = |\mathbb{N}|$

Note: Even though the first function you may think of, namely $f : \mathbb{N} \to \mathbb{Z}$ given by f(x) = x, is *not* a bijection, that doesn't mean there isn't some *other* function that is a bijection.

Proof. Consider the function $f : \mathbb{N} \to \mathbb{Z}$ depicted in this table:

This function has a formula,

$$f(x) = \begin{cases} x/2 & 2 \mid x \\ -(x-1)/2 & 2 \nmid x \end{cases}$$

We claim this function is bijective.

First we show it is injective. Note that it takes odd natural numbers to non-positive integers, and even natural numbers to positive integers. Therefore to rule out collisions, we need only check that the functions f(x) = x/2 and

f(x)=-(x-1)/2 are injective on even and odd numbers, respectively. I leave each of these as an exercise.

Next, we show it is surjective. But any positive integer n is the image of 2n and any non-positive integer -n is the image of 2n + 1. (I leave the details as an exercise.)

Properties of Cardinality

For this to be a good definition, we expect three properties:

Theorem 3. For any set A, |A| = |A|.

Theorem 4. For any sets A and B, if |A| = |B|, then |B| = |A|.

Theorem 5. For any sets A, B and C, if |A| = |B| and |B| = |C|, then |A| = |C|.

Prove these.