Math 2001, Spring 2023. Katherine E. Stange.

1 Assignment

Prove the following theorem.
Theorem 1. Let $n \in \mathbb{Z}$. If $n=x^{2}+y^{2}$ for some integers x and y, then $n \not \equiv 3$ modulo 4 .
Hint: There are only four 'numbers' in the mod 4 world. Try squaring and adding them in all possible ways.
Proof. Let $n \in \mathbb{Z}$, and suppose $n=x^{2}+y^{2}$ where x and y are integers. Then, $x \equiv x_{0}(\bmod 4)$ and $y \equiv y_{0}(\bmod 4)$, for some $x_{0}, y_{0} \in\{0,1,2,3\}$.

Working modulo 4 , we have

$$
0^{2} \equiv 0, \quad 1^{2} \equiv 1, \quad 2^{2} \equiv 0, \quad 3^{2} \equiv 1
$$

Now,

$$
x^{2}+y^{2} \equiv x_{0}^{2}+y_{0}^{2} \quad(\bmod 4)
$$

The quantity $x_{0}^{2}+y_{0}^{2}$ is equivalent modulo 4 to one of the following: $0+0 \equiv 0,0+1 \equiv 1$ or $1+1 \equiv 2$. Hence it is not $3 \bmod p$. Therefore

$$
x^{2}+y^{2} \not \equiv 3 \quad(\bmod 4)
$$

The following is a shorter version of the same thing.
Proof. Working modulo 4, we have

$$
0^{2} \equiv 0, \quad 1^{2} \equiv 1, \quad 2^{2} \equiv 0, \quad 3^{2} \equiv 1
$$

Thus, any sum of squares modulo 4 is one of $0+0 \equiv 0,0+1 \equiv 1$ or $1+1 \equiv 2$. Thus a sum of squares cannot be 3 $(\bmod 4)$. Since n can be written as a sum of squares, it is not 3 modulo 4 .

