Math 2001, Spring 2023. Katherine E. Stange.

1 Assignment

Prove the following theorem.
Theorem 1. Let f_{n} be the n-th Fibonacci number. That is, $f_{1}=f_{2}=1$ and $f_{n+2}=f_{n-1}+f_{n}$ for $n \geq 1$. For all $n \geq 2$, we have $f_{n}<2^{n}$.

Proof. We will prove this by induction on n.
Base cases: Let $n=2$. Then $f_{2}=1<2^{2}=4$. Let $n=3$. Then $f_{3}=f_{2}+f_{1}=1+1=2<2^{3}=8$.
Inductive step: Suppose the theorem holds for $2 \leq n \leq k$, were $k \geq 3$. We will prove that it holds for $n=k+1$. Using the inductive hypothesis for $n=k$ and $n=k-1$, we have

$$
f_{k+1}=f_{k}+f_{k-1}<2^{k}+2^{k-1}<2^{k}+2^{k}=2^{k+1}
$$

Questions for you: Why did I need two base cases?? Were you careful about which cases you were assuming in the inductive hypothesis?

