
Theorem
Let n and k be integers. Suppose n pigeons are to be placed
into k holes. Suppose n > k. Then at least one hole is shared
(i.e. has more than one pigeon in it).

Proof by contrapositive.
Let n and k be integers. Suppose n pigeons are placed into k
holes. Suppose that no holes are shared. Then, there is at
least one hole per pigeon, so that k ≥ n. This proves the
theorem by contrapositive.

Proof by contradiction.
Let n and k be integers. Suppose n pigeons are placed into k
holes. Suppose n > k . Suppose, for a contradiction that no
holes are shared. Then, there is at least one hole per pigeon,
so that k ≥ n. This is a contradiction.
Notice the similarity between the two methods. The first is
preferable.
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Theorem
Among any 3 positive integers, there exist two of the same
parity.

Proof.
Consider two bins, labelled “odd” and “even”. Placing each of
the three integers into the bin corresponding to its parity, we are
placing three items into two bins. By the pigeonhole principle,
there must be at least two items in one of the bins. In other
words, two of the integers have the same parity.
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Theorem
Consider a unit square with sides of
length 1. Suppose 5 points are placed
inside this square. Then there exist two
points x and y among these five, such
that the distance between x and y is less
than or equal to 1/

√
2.

Proof.
Divide the square into four quadrants as shown. Then, each
point lies in one and only one quadrant. There are five points
and four quadrants. Therefore, by the pigeonhole principle,
there must be two points lying in the same quadrant. But each
quadrant is a box with sides 1/2, hence its longest diagonal is
length 1/

√
2. This implies the two points contained within it can

be at a distance of at most 1/
√
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Theorem
Any X ⊆ {1,2,3,4,5,6,7,8} such that |X | = 5 will include two
elements a and b such that a + b = 9.

Proof.
Label four bins with the labels “1+8”, “2+7”, “3+6”, and “4+5”.
These correspond to the four possible ways to build a pair of
elements a and b with a + b = 9. Now, consider the five
elements of the set X . Place each element x into the bin having
x as one of the two digits in the label. By the pigeonhole
principle, placing 5 things into 4 bins results in at least two
items sharing a bin. Since the items are distinct, if there are two
items in “x + y ”, then one is x and the other is y , hence we
have two items in our set X which sum to 9.
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Theorem
No matter how one colours an 8× 8
chessboard with black and white, there
will always be two L-shaped regions that
have the same colouring.

Proof.
On an 8× 8 chessboard, there are 6× 6 = 36 locations one
may place an L-shaped region (to see this, consider that the
corner square of the L can be in any of the first 6 rows and first
6 columns, to allow space for the legs of the L). There are,
however, 25 = 32 ways to colour an L-shaped region. Consider
all 36 L-shaped regions and assign each of them to one of 32
bins based on their colouring. By pigeonhole principle, we find
that two L-shaped regions must have the same colouring.
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Theorem
Amongst any n positive integers, there exist two whose
difference is divisible by n − 1.

Proof.
Label n − 1 bins by the labels 0,1, . . . ,n − 2. For each of the n
positive integers, determine its residue modulo n − 1. Place it
into the bin labelled by this resiude. Then we are placing n
integers into n − 1 bins. By the pigeonhole principle, there must
be two integers x1 and x2 in the same bin. But then x1 ≡ x2
(mod n − 1). Therefore their difference is divisible by n − 1.
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Theorem
Suppose n ≥ 2 people are in a room together. Suppose each
pair is either a pair of friends or not. Then there are two people
with the same number of friends.

Proof.
First, if two people in the room have no friends at all, then we
are done. So we can assume there is at most one person in the
room with no friends at all. If there is one such person, we can
ignore that person and reduce the problem to the remaining
people, all of whom have at least one friend. Therefore, without
loss of generality, we can assume everyone has at least one
friend. Label n bins by the labels 1, . . . , n − 1. Place each
person into the bin labelling the number of friends he/she has.
We are placing n people into n − 1 bins, so by the pigeonhole
principle, two people must have the same number of
friends.
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Proof.
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9. Then, for each natural number a, place it into the bin labelled
by the last digit of na. Then, since there are infinitely many
natural numbers, by pigeonhole principle, two of them are in the
same bin. Thus na and nb have the same last digit. In other
words, na − nb is divisible by 10.
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Theorem
Given five distinct lattice points in the
plane, at least one of the line segments
defined as joining two such points has a
lattice point as a midpoint.

Proof.
The lattice points of the plane are taken to be those with integer
coordinates. Let (a,b) and (c,d) be two lattice points in the
plane, i.e. a,b, c,d ∈ Z. Their midpoint is

(a+b
2 , c+d

2

)
. For this

to be a lattice point (i.e. integer coordinates), it is necessary
and sufficient to have that a and b have the same parity and
that c and d have the same parity. Therefore, label four boxes
with (even,even), (even,odd), (odd ,even) and (odd ,odd).
Place each point (a,b) into the box whose parities correspond
to the parities of a and b. Then, by the pigeonhole principle,
some box contains two points. Those two points are then such
that their midpoint is a lattice point.
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