Worksheet on Inverse Functions

November 17, 2015

1 Warmup

Let $f: A \to B$.

- 1. Write out the definition of injectivity.
- 2. Write out the definition of surjectivity.
- 3. Suppose |A| > |B|. Is it possible for f to be
 - (a) injective?
 - (b) surjective?
 - (c) bijective?
- 4. Suppose |A| < |B|. Is it possible for f to be
 - (a) injective?
 - (b) surjective?
 - (c) bijective?
- 5. Suppose |A| = |B|. Is it possible for f to be
 - (a) injective?
 - (b) surjective?
 - (c) bijective?

2 The identity function

Definition 1. Let A be a set. We write 1_A for the identity function on A, given by $1_A(a) = a$ for all $a \in A$.

- 1. Let $A = \{1, 2, 3\}$. Draw the arrow diagram of 1_A .
- 2. In general, is 1_A injective, surjective or bijective?

3 Inverse functions

Definition 2. Let $f: A \to B$ be a function. Let $g: B \to A$ be a function. Then we say that g is the inverse of f, and denote it f^{-1} , if $g \circ f = 1_A$ and $f \circ g = 1_B$.

1. For each function f, draw the arrow diagram of f. Draw the arrow diagram of f^{-1} or explain why f^{-1} doesn't exist.

(a)
$$f: \{A, B, C\} \to \{1, 2, 3\}$$
 given by $f(A) = 1, f(B) = 3, f(A) = 2$.

(b)
$$f: \{A, B, C\} \to \{1, 2\}$$
 given by $f(A) = 1, f(B) = 1, f(A) = 2$.

(c)
$$f: \{A, B\} \to \{1, 2, 3\}$$
 given by $f(A) = 1, f(B) = 2$.

2. Does $f: \mathbb{Z} \to \mathbb{Z}$ given by f(x) = x + 1 have an inverse? What is it?

Theorem 1. Let $f: A \to B$ be bijective. Then f has an inverse.