Pruning trees: A motivational problem for proof by induction

Katherine E. Stange, University of Colorado Boulder

March 2nd, 2018
Theorem

A tree with n vertices has $n - 1$ edges.
Theorem

A tree with n vertices has $n - 1$ edges.

Proof Idea:
Theorem
A tree with \(n \) vertices has \(n - 1 \) edges.

Proof Idea:
1. Every tree can be built out of smaller trees.
Theorem
A tree with n vertices has $n - 1$ edges.

Proof Idea:
1. Every tree can be built out of smaller trees.
2. The truth of the statement is preserved by this building process.
Theorem

A tree with \(n \) vertices has \(n - 1 \) edges.

Proof Idea:

1. Every tree can be built out of smaller trees.
2. The truth of the statement is preserved by this building process.
3. The statement holds for the smallest trees.
Every tree can be built out of smaller trees.
Every tree can be built out of smaller trees.

Let T be a tree on n vertices.

Let e be an edge of T.

If we delete e, we will be left with two trees. Call them T_1 and T_2.

These trees both have strictly fewer vertices than n.
Every tree can be built out of smaller trees.

- Let T be a tree on n vertices.
Every tree can be built out of smaller trees.

- Let T be a tree on n vertices.
- Let e be an edge of T.
Every tree can be built out of smaller trees.

- Let T be a tree on n vertices.
- Let e be an edge of T.
- If we delete e, we will be left with two trees. Call them T_1 and T_2.
Every tree can be built out of smaller trees.

- Let T be a tree on n vertices.
- Let e be an edge of T.
- If we delete e, we will be left with two trees. Call them T_1 and T_2.
- These trees both have strictly fewer vertices than n.
The truth of the statement is preserved by this building process.
The truth of the statement is preserved by this building process.
The truth of the statement is preserved by this building process.

- Suppose T_1 has n_1 vertices and T_2 has n_2 vertices.
The truth of the statement is preserved by this building process.

- Suppose T_1 has n_1 vertices and T_2 has n_2 vertices.
- If the statement holds for the two smaller trees, then they have $n_1 - 1$ and $n_2 - 1$ edges, respectively.

So if the statement is true for the smaller trees, then it holds for T also.
The truth of the statement is preserved by this building process.

- Suppose T_1 has n_1 vertices and T_2 has n_2 vertices.
- If the statement holds for the two smaller trees, then they have $n_1 - 1$ and $n_2 - 1$ edges, respectively.
- Then T has $n = n_1 + n_2$ vertices and $(n_1 - 1) + (n_2 - 1) + 1 = n - 1$ edges.
The truth of the statement is preserved by this building process.

- Suppose T_1 has n_1 vertices and T_2 has n_2 vertices.
- If the statement holds for the two smaller trees, then they have $n_1 - 1$ and $n_2 - 1$ edges, respectively.
- Then T has $n = n_1 + n_2$ vertices and $(n_1 - 1) + (n_2 - 1) + 1 = n - 1$ edges.
- So if the statement is true for the smaller trees, then it holds for T also.
The statement holds for the smallest trees.
The statement holds for the smallest trees.
The statement holds for the smallest trees.

- The smallest tree is the tree with one vertex.
The statement holds for the smallest trees.

- The smallest tree is the tree with one vertex.
- It has no edges.
The statement holds for the smallest trees.

- The smallest tree is the tree with one vertex.
- It has no edges.
- So the theorem holds in this particular case.
The formal structure of a proof by induction.
The formal structure of a proof by induction.
The formal structure of a proof by induction.

- **Base Case:** Show that the theorem is true for \(n = 1 \) (or an appropriate list of small \(n \)).
The formal structure of a proof by induction.

- **Base Case:** Show that the theorem is true for \(n = 1 \) (or an appropriate list of small \(n \)).
- **Inductive Step:** Show that if the theorem is true for \(k < n \), then it is true for \(n \).
Theorem

A tree with n vertices has $n - 1$ edges.
Theorem

A tree with n vertices has \(n - 1 \) edges.

- We will prove this by induction on the number of vertices, \(n \).
Theorem

A tree with n vertices has $n - 1$ edges.

- We will prove this by induction on the number of vertices, n.
- **Base Case:** The tree with one vertex has zero edges. Therefore the theorem holds for $n = 1$.
Theorem

A tree with n vertices has $n - 1$ edges.

- We will prove this by induction on the number of vertices, n.
- **Base Case:** The tree with one vertex has zero edges. Therefore the theorem holds for $n = 1$.
- **Inductive Step:** Suppose that all trees with k vertices, where $k < n$, have $k - 1$ edges.
Theorem

A tree with \(n \) *vertices has* \(n - 1 \) *edges.*

- **We will prove this by induction on the number of vertices,** \(n \).
- **Base Case:** The tree with one vertex has zero edges. Therefore the theorem holds for \(n = 1 \).
- **Inductive Step:** Suppose that all trees with \(k \) vertices, where \(k < n \), have \(k - 1 \) edges.
- Then consider a tree \(T \) with \(n \) vertices. Let \(e \) be an edge of \(T \).
Theorem

A tree with \(n \) vertices has \(n - 1 \) edges.

- We will prove this by induction on the number of vertices, \(n \).
- **Base Case:** The tree with one vertex has zero edges. Therefore the theorem holds for \(n = 1 \).
- **Inductive Step:** Suppose that all trees with \(k \) vertices, where \(k < n \), have \(k - 1 \) edges.
- Then consider a tree \(T \) with \(n \) vertices. Let \(e \) be an edge of \(T \).
- Removing \(e \) leaves two trees \(T_1 \) and \(T_2 \). Let’s suppose they have \(n_1 \) and \(n_2 \) vertices.
Theorem

A tree with \(n \) vertices has \(n - 1 \) edges.

- We will prove this by induction on the number of vertices, \(n \).
- **Base Case:** The tree with one vertex has zero edges. Therefore the theorem holds for \(n = 1 \).
- **Inductive Step:** Suppose that all trees with \(k \) vertices, where \(k < n \), have \(k - 1 \) edges.
- Then consider a tree \(T \) with \(n \) vertices. Let \(e \) be an edge of \(T \).
- Removing \(e \) leaves two trees \(T_1 \) and \(T_2 \). Let’s suppose they have \(n_1 \) and \(n_2 \) vertices.
- Since \(n_1, n_2 < n \), the inductive hypothesis applies to \(T_1 \) and \(T_2 \).
Theorem
A tree with n vertices has $n - 1$ edges.

- We will prove this by induction on the number of vertices, n.
- **Base Case:** The tree with one vertex has zero edges. Therefore the theorem holds for $n = 1$.
- **Inductive Step:** Suppose that all trees with k vertices, where $k < n$, have $k - 1$ edges.

Then consider a tree T with n vertices. Let e be an edge of T.

Removing e leaves two trees T_1 and T_2. Let’s suppose they have n_1 and n_2 vertices.

- Since $n_1, n_2 < n$, the inductive hypothesis applies to T_1 and T_2.
- Therefore T_1 and T_2 have $n_1 - 1$ edges and $n_2 - 1$ edges, respectively.
Theorem
A tree with n vertices has $n - 1$ edges.

- We will prove this by induction on the number of vertices, n.
- **Base Case:** The tree with one vertex has zero edges. Therefore the theorem holds for $n = 1$.
- **Inductive Step:** Suppose that all trees with k vertices, where $k < n$, have $k - 1$ edges.
- Then consider a tree T with n vertices. Let e be an edge of T.
- Removing e leaves two trees T_1 and T_2. Let’s suppose they have n_1 and n_2 vertices.
- Since $n_1, n_2 < n$, the inductive hypothesis applies to T_1 and T_2.
- Therefore T_1 and T_2 have $n_1 - 1$ edges and $n_2 - 1$ edges, respectively.
- Also, $n_1 + n_2 = n$ since removing an edge does not remove any vertices.
Theorem
A tree with \(n \) vertices has \(n - 1 \) edges.

- We will prove this by induction on the number of vertices, \(n \).
- **Base Case:** The tree with one vertex has zero edges. Therefore the theorem holds for \(n = 1 \).
- **Inductive Step:** Suppose that all trees with \(k \) vertices, where \(k < n \), have \(k - 1 \) edges.
- Then consider a tree \(T \) with \(n \) vertices. Let \(e \) be an edge of \(T \).
- Removing \(e \) leaves two trees \(T_1 \) and \(T_2 \). Let’s suppose they have \(n_1 \) and \(n_2 \) vertices.
- Since \(n_1, n_2 < n \), the inductive hypothesis applies to \(T_1 \) and \(T_2 \).
- Therefore \(T_1 \) and \(T_2 \) have \(n_1 - 1 \) edges and \(n_2 - 1 \) edges, respectively.
- Also, \(n_1 + n_2 = n \) since removing an edge does not remove any vertices.
- Now, we count the edges of \(T \):
 - \(n_1 - 1 \) from \(T_1 \)
 - \(n_2 - 1 \) from \(T_2 \)
 - 1 (the edge \(e \))
Theorem

A tree with n vertices has $n - 1$ edges.

- We will prove this by induction on the number of vertices, n.
- **Base Case:** The tree with one vertex has zero edges. Therefore the theorem holds for $n = 1$.
- **Inductive Step:** Suppose that all trees with k vertices, where $k < n$, have $k - 1$ edges.
- Then consider a tree T with n vertices. Let e be an edge of T.
- Removing e leaves two trees T_1 and T_2. Let’s suppose they have n_1 and n_2 vertices.
- Since $n_1, n_2 < n$, the inductive hypothesis applies to T_1 and T_2.
- Therefore T_1 and T_2 have $n_1 - 1$ edges and $n_2 - 1$ edges, respectively.
- Also, $n_1 + n_2 = n$ since removing an edge does not remove any vertices.
- Now, we count the edges of T:
 - $n_1 - 1$ from T_1
 - $n_2 - 1$ from T_2
 - 1 (the edge e)
- Therefore T has $(n_1 - 1) + (n_2 - 1) + 1 = n_1 + n_2 - 1 = n - 1$ edges.