1 Functions

A function \(f : A \to B \) is a way to assign one value of \(B \) to each value of \(A \). \(A \) is the domain. \(B \) is the codomain.

More formally, you could say \(f \) is a subset of \(A \times B \) which contains, for each \(a \in A \), exactly one ordered pair with first element \(a \).

2 Ways to draw a function

For each function, do the following:

1. list it as a table,
2. list it as a set of ordered pairs from \(A \times B \),
3. draw it as a ‘graph,’
4. draw it as an arrow diagram.

1. \(f : \{a, b, c\} \to \{1, 2\} \) given by \(f(a) = f(b) = 1 \) and \(f(c) = 2 \).

2. \(f : \{0, 1, 2\} \to \{0, 1, 2\} \) given by \(f(x) = x \).

3. \(f : \mathbb{N} \to \mathbb{N} \) given by \(f(x) = x + 1 \).
3 Injective, Surjective, Bijective

Definition 1. 1. A function $f : A \to B$ is surjective if for every $b \in B$, there exists an $a \in A$ such that $f(a) = b$. (Another word for surjective is onto.)

2. A function $f : A \to B$ is injective if for every pair $a_1, a_2 \in A$, $a_1 \neq a_2$ implies $f(a_1) \neq f(a_2)$. (Another word for injective is 1-to-1.)

3. A function $f : A \to B$ is bijective if it is both surjective and injective.

For each function on the last page, indicate if it is injective, surjective and/or bijective.

Definition 2. The range of $f : A \to B$ is

$$\{b \in B : \exists a \in A, f(a) = b\}.$$

In other words, the range is the collection of values of B that get ‘hit’ by the function.

1. List all functions $f : \{a, b\} \to \{x, y\}$. For each, indicate if it is injective, surjective and/or bijective. State the range.

2. Is the function $f : \mathbb{Z} \to \mathbb{Z}$ given by $f(x) = 2x$ injective, surjective and/or bijective? Give the range in set builder notation.
3. Give examples of functions $f : \mathbb{R} \to \mathbb{R}$ (like \sin, x^2 etc.) which are:

(a) injective but not surjective
(b) surjective but not injective
(c) bijective
(d) neither injective nor surjective

4. Explain the properties of the graph of a function $f : \mathbb{R} \to \mathbb{R}$ in the plane \mathbb{R}^2 which correspond to injectivity or surjectivity (e.g. vertical line test).

5. Let \mathbb{R}^+ denote the positive real numbers. Write a nice proof that the function $f : \mathbb{R} \to \mathbb{R}^+$ given by $f(x) = e^x$ is bijective.