Proof For Feedback for Apr 14

Math 2001, Spring 2023. Katherine E. Stange.

Theorem 1. Define the following relation on \mathbb{Z} : xRy if $x = 2^k y$ for some $k \in \mathbb{Z}$. Then this relation is an equivalence relation.

Hint: Do some examples to make sure you understand the definition. For example, 2R1 but 3 is not related to 5.

Proof. We need to check three properties.

Reflexivity: Let $x \in \mathbb{Z}$. Then $x = 2^0 x$, so that xRx.

Symmetry: Let $x, y \in \mathbb{Z}$, and suppose xRy. Then $x = 2^k y$ for some $k \in \mathbb{Z}$. Therefore $y = 2^{-k}x$, so yRx. Transitivity: Let $x, y, z \in \mathbb{Z}$, and suppose xRy and yRz. Then $x = 2^k y$ and $y = 2^\ell z$. Combining these, $x = 2^k 2^\ell z = 2^{k+\ell} z$, so that xRz.