Proof For Feedback for Apr 14

Math 2001, Spring 2023. Katherine E. Stange.

Theorem 1. Define the following relation on \mathbb{Z} : $x R y$ if $x=2^{k} y$ for some $k \in \mathbb{Z}$. Then this relation is an equivalence relation.

Hint: Do some examples to make sure you understand the definition. For example, $2 R 1$ but 3 is not related to 5 .
Proof. We need to check three properties.
Reflexivity: Let $x \in \mathbb{Z}$. Then $x=2^{0} x$, so that $x R x$.
Symmetry: Let $x, y \in \mathbb{Z}$, and suppose $x R y$. Then $x=2^{k} y$ for some $k \in \mathbb{Z}$. Therefore $y=2^{-k} x$, so $y R x$.
Transitivity: Let $x, y, z \in \mathbb{Z}$, and suppose $x R y$ and $y R z$. Then $x=2^{k} y$ and $y=2^{\ell} z$. Combining these, $x=2^{k} 2^{\ell} z=2^{k+\ell} z$, so that $x R z$.

