Definition 1. A set A is a subset of a set B, denoted $A \subset B$, if every element of A is an element of B. **Definition 2.** Let A and B be sets. The Cartesian product $A \times B$ is defined as follows:

$$A \times B := \{(a,b) : a \in A, b \in B\}.$$

0.1 Subsets

1. List all the possible subsets of $\{a, b\}$. (Hint: there are four.)

0.2 Cartesian products

- 1. Write the cartesian product $A \times B$ where $A = \{1, 2\}$ and $B = \{a, b\}$.
- 2. Explain why, for the example above, $A \times B \neq B \times A$.
- 3. Give an example of two sets A and B where $A \times B = B \times A$.
- 4. Determine $A \times \emptyset$, where $A = \{1, 2\}$.
- 5. Give an example of two sets A and B where $A \times B = B \times A$ but $B \neq A$.
- 6. If |A| = 5 and |B| = 7, then what is $|A \times B|$?
- 7. Give set builder notation for $\mathbb{R} \times \mathbb{R}$.
- 8. The graph of a function is a subset of $\mathbb{R} \times \mathbb{R}$. That is,

$$\{(x, f(x)) : x \in \mathbb{R}\} \subset \mathbb{R} \times \mathbb{R}.$$

Of the examples below, draw the graph. Which of these graphs is **itself** a Cartesian product? If it is a Cartesian product, find A and B so that the graph is $A \times B$.

- (a) $f(x) = x^2$
- (b) f(x) = x
- (c) f(x) = 3

0.3 Getting crazy

1. Let S be the set of sets that do not contain themselves. In notation,

$$S = \{X : X \notin X\}.$$

- (a) Can you give an example of an element of S?
- (b) Can you give an example of something not in S?
- (c) Is $S \in S$?
- 2. We say that a set X satisfies the *Well-Ordering Principle* if every non-empty subset of X has a least element. (This only makes sense in contexts where "least" is defined, such as numbers.) Which of the following sets satisfy the Well-Ordering Principle? If it fails, give an example that demonstrates this.
 - (a) \mathbb{Z}
 - (b) ℕ
 - (c) \mathbb{R}
- 3. Challenge: Write down, with finite notation (no "..."), e.g. setbuilder notation or symbols we have used so far,
 - (a) the biggest *finite* set you can think of.
 - (b) the "biggest" infinite set you can think of.

Compare to your friends. Whose is bigger? How can you tell? If your friend beat you, make yours bigger!