Modular Arithmetic Practice Sheet

Katherine E. Stange, CU Boulder

Basic Practice

Compute the modular arithmetic quantities, modulo n, in such a way that your answer is an integer $0 \le k < n$.

Do NOT use a calculator. Do these in your head.

- 1. $4+1 \pmod{5}$
- 2. $11 + 1 \pmod{6}$
- 3. $12 + 17 \pmod{8}$
- 4. $5 \cdot 3 \pmod{12}$
- 5. $3^3 \pmod{8}$
- 6. Compare to the answer key at the end.

What's wrong with this computation?

Let's suppose I want to compute $6^{10} \pmod{7}$.

Here's one way:

$$6^{10} \equiv (-1)^{10} \equiv 1 \pmod{7}$$
.

Here's another way:

$$6^{10} \equiv 6^3 \equiv 36 \cdot 6 \equiv 1 \cdot 6 \equiv 6 \pmod{7}.$$

Only one of these can be correct. Which one is wrong and why? See the answer key only after you have committed yourself fully to your answer.

Addition and Multiplication Tables

Complete the addition and multiplication tables modulo 6. Compare to the answer key.

Addition Table Mod 6

	0	1	2	3	4	5
0						
1						
1 2 3 4 5						
3						
4						
5						

Multiplication Table Mod 6

	0	1	2	3	4	5
0						
1						
2						
2 3						
$\frac{4}{5}$						

You'll need to reduce along the way

Here are some more modular arithmetic calculations. Again, you may NOT use a calculator. Instead, find ways to reduce the computation along the way, as demonstrated in the video. Find the most *efficient* approach: with a little cleverness, you should get to where you can do it in your head.

- 1. $10040 + 10101 \pmod{2}$
- $2.\ 123451 + 1987891\ (\mathrm{mod}\ 10)$
- 3. $131235321 \cdot 22 \pmod{11}$
- 4. $(100 + 201 + 334) \cdot (997^3) \pmod{3}$
- 5. $33335^8 \pmod{3}$
- 6. Compare to the answer key.

Answer Key

Basic Practice

0, 0, 5, 3, 3

What's wrong with this computation?

In the second computation, the exponent is reduced from 10 to 3 because these are equivalent modulo 7. However, only *summands* and *factors* can be reduced, i.e. you can reduce numbers that are part of a sum or part of a product. But in an exponent, such reductions aren't allowed. The exponents are what they are (as integers). In the "Modular Arithmetic: User's Manual" video, we've only stated that you can reduce summands and factors. In the "Modular Arithmetic: Under the Hood" video, we will prove it. This example is a proof that you can't, in general, reduce the exponents with respect to the modulus.

Addition and Multiplication Tables

Mod 6

	0	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \end{array} $	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

Mod 6

	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	0 2 4 0 2 4	3	2	1

You'll need to reduce along the way

1, 2, 0, 2, 1