Fourier Exercise – Math 4440

1. Write down the QFT matrix of dimension 8×8. You can use the 8-th root of unity notation $\omega_8 = e^{i\pi/4}$. But simplify it so that the entries are all from the set \{1, -1, i, $-i$, ω_8, $-\omega_8$, $i\omega_8$, $-i\omega_8$\}.

Solution.

\[
\begin{pmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & \omega & i & i\omega & -1 & -i\omega & -i & -\omega \\
1 & i & -1 & -i & 1 & i & -1 & -i \\
1 & i\omega & -i & \omega & -1 & -\omega & i & -i\omega \\
1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\
1 & -i\omega & i & -\omega & -1 & \omega & -i & i\omega \\
1 & -i & -1 & i & 1 & -i & -1 & i \\
1 & -\omega & -i & -i\omega & -1 & i\omega & i & \omega
\end{pmatrix}
\]

2. The next several questions are a progression.

(a) What do you get if you apply the QFT of size $m = 2^n$ to the state

\[
\frac{1}{\sqrt{m}} \sum_{x=0}^{m-1} |x\rangle
\]

Give the answer in the form

\[
\sum_{x=0}^{m-1} \alpha_x |x\rangle.
\]

where α_x is as explicit as possible.

(b) Now, with reference to the last question, what is the explicit result (compute the coefficients exactly as complex numbers) if $m = 2^2 = 4$?

(c) What about when $m = 8$?

(d) What do you notice? Conjecture what happens in general.

(e) Prove it. (Note, there’s a complex-numbers geometric/computational proof and a two-line linear algebra proof.)

Solution.

(a)

\[
\frac{1}{m} \sum_{y=0}^{m-1} \sum_{k=0}^{m-1} \omega^{ky} |x\rangle.
\]

(b) We are essentially adding up the entries to each row of the matrix, and all but the first vanish. We get

$|0\rangle$.

(c) Similarly, $|0\rangle$.

(d) It will always be $|0\rangle$.

(e) The two-line proof is that the QFT matrix is invertible. We are asking for x in the equation $Fv = x$, but the inverse of the QFT is its conjugate transpose, F^\dagger, so this is $F^\dagger x = v$, i.e. write v as a sum of columns of F^\dagger; but the first column is v, so the answer is $(1, 0, 0, \ldots, 0)$, i.e. $|0\rangle$.

A more computational proof is to find the sum
\[
\sum_{y=0}^{m-1} \sum_{k=0}^{m/2-1} \omega^{xy}.
\]

Since ω is a root of unity, if x is non-zero, then this is a sum of the m m-th roots of unity, which surround the origin symmetrically and average to 0. (You can use trig to do this explicitly.) But if $x = 0$, then this is a sum of 1’s.

3. The next several questions are a progression.

(a) What do you get if you apply the QFT of size $m = 2^n$ to the state
\[
\frac{1}{\sqrt{m/2}} \sum_{x=0}^{m/2-1} |2x\rangle?
\]

Give the answer in the form
\[
\sum_{x=0}^{m-1} \alpha_x |x\rangle.
\]

where α_x is as explicit as possible.

(b) Now, with reference to the last question, what is the explicit result (compute the coefficients exactly as complex numbers) if $m = 2^2 = 4$?

(c) What about when $m = 8$?

(d) What do you notice? Conjecture what happens in general.

(e) Prove it.

Solution.

(a)
\[
\frac{\sqrt{2}}{m} \sum_{y=0}^{m-1} \sum_{k=0}^{m/2-1} \omega^{2kx} |x\rangle.
\]

(b) We are essentially adding up every second entry in each row of the matrix, and all but the first and second vanish. We get
\[
\frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |2\rangle.
\]
\[\frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |4\rangle. \]

(d) It will always be \(\frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |4\rangle. \)

(e) We are asking for \(x \) in the equation \(Fv = x \), but the inverse of the QFT is its conjugate transpose, \(F^\dag \), so this is \(F^\dag x = v \), i.e. write \(v \) as a sum of columns of \(F^\dag \); but the first column plus second column add to \(v \), so the answer is as conjectured.

A more computational proof is to find the sum

\[
\sum_{y=0}^{m-1} \sum_{k=0}^{m/2-1} \omega^{2ky}.
\]

Since \(\omega \) is a root of unity, if \(x \) is non-zero mod \(m \), then this is a sum of the \(m \) \(m \)-th roots of unity, which surround the origin symmetrically and average to 0. (You can use trig to do this explicitly.) But if \(x = 0 \) or \(m/2 \), then this is a sum of 1’s.