MATH 4440/5440 Assessment, Module 2
(Discrete Log Problem, More Modular
Arithmetic)

Katherine Stange, CU Boulder, Fall 2020

Honor Code Rules

Assessments are open book, but are to be completed on your own without collaboration. To be specific, you may
use your course notes, textbook, course website resources, course videos. You may not use the internet beyond
the course websites. You may not ask anyone else for help (except your professor), including other humans, or
posting/entering your question or any part of it into the internet. You may not share the questions or answers
with anyone else. You may not use calculators (even from the course websites) unless explicitly permitted in the
question.

Have you read, understood, and followed the honor code rules above?

YES | NO

Some instructions on formatting.

You may use the accompanying IXTEX source document to produce IXTEX’ed answers. You may typeset answers
separately. You may print the pages and solve the questions on them by hand. You may handwrite answers on
separate sheets. You may upload PDF or image files (JPG or PNG). No matter what you do, just make sure it
is clearly and easily legible before you upload it to canvas.

1 Question 1
(10 points) Compute the following expression by hand. Please show your work neatly and show all steps.
630027%°*®  (mod 63).
Solution. We know we can reduce the base modulo 63 and the exponent modulo ¢(63).
@(63) =¢(9-7) =66 = 36.

Therefore,
63002729 (mod 63). = 2'2 (mod 63).

This is now a manageble problem via successive squaring.
21 =222 =4,2* =16,2° = 256 = 4,

The result is therefore
212 =982 =4.16=64= 1.



2 Question 2

(10 points) Compute the inverse of 30 modulo 97 by hand. Note that 97 is prime. Show your work neatly please,
and show all steps.
Solution.
We use Gauss’ method.
First, divide 97 by 30:
97=3-30+7

We learn that
30-(—=3)=7 (mod 97).

Then, divide 97 by 7:
97=13-7+6

Adding a copy of 7, we obtain
97=14-7-1

We learn that

7-14=1 (mod 97).

Taking our two ”learned facts” together gives

30-(=3)-14=1 (mod 97).

Therefore the inverse of 30 is
—3-14=-42=55 (mod 97).

3 Question 3

(10 points) You wish to solve a discrete logarithm problem h = ¢g* (mod 137). Note that 137 is prime.
You know the following facts:

¢'?% =12 (mod 137),
¢ =6 (mod 137),
¢g® =30 (mod 137),
h*g® = 60h%g (mod 137).
What is « = Ly(h)? Please compute by hand, be neat and show all steps.
Solution.
Write Xo = Ly(2), X3 = Ly(3), X5 = Ly(5). Then we can write the facts above as
125 =2X5 + X3 (mod 136)
59 = X + X35 (mod 136)
78 = Xo+ X3+ X5 (mod 136)
2e+3=2Xy+ X3+ X5+3z+1 (mod 136)



We need to solve this system of equations. From the first two equations, Xo = 125 — 59 = 66. From the second
and third, X5 = 78 — 59 = 19. From the second, using X5 = 66, X3 =59 — 66 = —7.
Plugging all that into the last, we have

20 4+3=-4-7+194+3z+1

which simplifies to

4

x=—-6=130 (mod 136).

Question 4

Miscellaneous Brief Questions (20 points total).

4.1 Short Answer Question
(2 points)

1. Suppose Bob has an El Gamal private key a and public key h. The modulus p and primitive root g are
common knowledge. Consider a ciphertext (r,t) that encrypts plaintext message m, encrypted to Bob.
Suppose an attacker sees (r,t), but does not know m, or the private key a of Bob. Can this attacker
generate, in polynomial time, a valid ciphertext (r,t') that correctly encrypts the plaintext 2m to Bob? In
fact, he can. Give a formula or algorithm for ¢’ that this attacker can use to compute it.

4.2 True/False Questions

(14 points) Please indicate, for each statement, whether it is true or false.

1

2.

The Computational Diffie-Hellman Problem reduces to the Discrete Logarithm Problem.
Solving the Discrete Logarithm Problem suffices to break the El Gamal cryptosystem.
The key obtained in Diffie-Hellman key exchange can be pre-determined by one party before the exchange.

The method of successive squaring for modular exponentiation has exponential runtime in the bitlength of
the exponent.

The Birthday Attack on the Discrete Logarithm Problem has polynomial runtime in the bitlength of the
modulus.

The runtime for Index Calculus is superior to that of Baby-Step-Giant-Step.
For g,a,b € (Z/pZ)*, Ly(ab) = Ly(a)Ly(b).



4.3 Fill in the blank

(4 points) Only the answer matters.

1. The number of cycles that will appear in the additive dynamics of +15 modulo 1000 is

2. Let g be a primitive root modulo p. Ignoring 0, the number of cycles that will appear in the multiplicative
dynamics of xg¢? modulo p is

Solutions.
1. t' = 2t.
1. True
2. True
False
False
5. False
6. True
7. False

5 Question 5

(10 points) Allow me to remind you of the definition of Big-Oh notation.

Definition 1. . Let f : (0,00) — R and let g : (0,00) — RZ%. Then we say that f = O(g) if there exist real
constants ¢ > 0 and xo > 0 such that, for x > xg, we have |f(x)| < cg(x).

Prove that, for any non-negative integer k, z¥ = O(e®). (Hint: induction on k combined with calculus.)
Solution 1.
This solution uses L’Hopital’s Rule. We will show that

If that holds, then clearly 2* < e® for sufficiently large z, so ¥ = O(e®).
Let us induct on k. The base case is k = 0. In that case we have
20

lim — = lim — =0,
rz—o0 et rx—o0 et

since e tends to oco.



For the inductive step, we assume

k
lim — =0,
rz—o00 el
Then by L’Hopital’s Rule, since the limit above exists,
k+1 ko 1)k k
lim —lim( + Dz =(k+1) lim —=0
rz—oo eT T—r00 er T—00 €

Note on the above solution: The limit formulation implies the big-Oh formulation, but the converse is not in
general true.
Solution 2.
We wish to show that for all k, there exists a C' and an xq so that for all x > xg,
< ce®.

The equation above is equivalent to the equation
klog(xz) — log(c) < z,

at least for k£ > 0 and positive ¢ and x.
For k£ = 0, this equation holds for x > x¢ if we take ¢ > 0 and ¢ > 0.
log(x)

We can write Ll )
lim M =k lim )

Tr—r00 X T—00 X

This reduces us to showing
. log(z)
lim

T—00 T

=0.

That can be accomplished by, for example, L’Hopital’s rule.
Notes on this solution: It avoids induction because we can easily factor the k out of the limit.
Solution 3.
This can be accomplished by use of the series expansion for e”:

n

e‘czz%:1+x+x2/2+x3/3!+---
n=0

Let g > 0. If z > xg > 0, then all the contributing terms are positive. Hence e* exceeds any one of the terms:
e > zk k.

Hence, taking ¢ = k!, we obtain the result.

Solution 4.

Let us induct on k. The base case is k = 0. But 1 = O(e”) since e” > 1 for all x > 0.

Suppose it holds for some k > 0, that ¥ = O(e®). Then, for sufficiently large 2 and some ¢, ce® — z* > 0.
Since e > 1, by doubling ¢, we can guarantee ce® — x* > 1. Consider the quantity f(z) = (k + 1)ce® — zF1. Tts
derivative is f'(z) = (k+1)(ce® — z¥), which by the inductive hypothesis, satisfies f'(z) > k+1 > 1. Hence f(z)
tends to infinity and will therefore eventually be positive, which is to say, 2¥T! = O(e®).



6 Question 6

(10 points) Let p be an odd prime, and ¢ a primitive root modulo p. Prove that a non-zero residue a € Z/pZ has
a square root (i.e. is a square of something in Z/pZ) if and only if L,(a) is even.
Solution.

Proof. Every non-zero residue a can be written as a = ¢* (mod p), where x = L,(a).

If  is even, say = = 2k, then (¢¥)? = ¢° = a (mod p), so a has a square root, namely g*.

Conversely, if a has a square root, say b, then b2> = a (mod p). Since b is nonzero (otherwise a would be zero),
we can write b = g¥ for some k. Then ¢* = a = b? = ¢g** (mod p). Hence z = 2k (mod p — 1).

In other words, © = 2k + ¢(p — 1). But since p — 1 is even, z is therefore even (and, in fact, ‘even’ and ‘odd’
are well-defined notions modulo p — 1, meaning that any other residue congruent to x will have the same parity
as ). O

Notes: The last paragraph is not strictly required in your writeup, but it’s a good thing to ponder a little
here: if p — 1 were odd, the idea of ‘even’ wouldn’t even make sense for a discrete log.



	Question 1
	Question 2
	Question 3
	Question 4
	Short Answer Question
	True/False Questions
	Fill in the blank

	Question 5
	Question 6

