
A Whirlwind Tour of Cryptography

Katherine E. Stange, Math 4440/5440 First Day (August 26, 2024)



Ancient Cryptography

Atbash Cipher
Jeremiah 25:26 “The king of Sheshach shall drink after them”



Ancient Cryptography

Ceasar Wheel
image: Subjectiveart, CC BY-SA 4.0 https://creativecommons.org/licenses/by-sa/4.0, via Wikimedia Commons



Last 500 years

Vigenère Cipher

KEY 1 3 2 4 1 3 2 4 1 3 2 4

PLAINTEXT A T T A C K A T D A W N

CIPHERTEXT B W V E D N C X E D Y R

“impossible of translation” - Scientific American, 1917

Example of a substitution cipher (replacing characters)



First World War

A D F G V X

A c o 8 x f 4
D m k 3 a z 9
F n w 1 0 j d
G 5 s i y h u
V p l v b 6 r
X e q 7 t 2 g

3 4 2 1

D G X G
X G D G
A A D D
D G X G
F X D G
F D F A

Plaintext: attack at dawn

Step 1: DG XG XG DG AA DD DG XG FX DG FD FA

Ciphertext: GGDGGAXDDXDFDXADFFGGAGXD

Includes an example of a transposition cipher (reordering
characters)



Second World War

Wartime Enigma Machine
at left: public domain; at right: Bundesarchiv, Bild 101I-769-0229-10A / Borchert, Erich (Eric) /

CC-BY-SA 3.0, CC BY-SA 3.0 DE https://creativecommons.org/licenses/by-sa/3.0/de/deed.en, via Wikimedia
Commons



Second World War



Second World War



Symmetric Key Cryptography

All the systems discussed so far are symmetric key
cryptosystems. Such a system consists of:

1. A secret key, i.e. a piece of information that allows for easy
encryption and decryption, secretly shared between sender and
receiver.

2. An encryption method, that uses the secret key to
transform the plaintext (the original message, typically in a
natural language such as english) into the ciphertext (the
encrypted message that looks like gobbledygook to the
untrained eye).

3. A decryption method, that uses the secret key to transform
the ciphertext into the plaintext.

Problems: key distribution



Symmetric Key Cryptography

All the systems discussed so far are symmetric key
cryptosystems. Such a system consists of:

1. A secret key, i.e. a piece of information that allows for easy
encryption and decryption, secretly shared between sender and
receiver.

2. An encryption method, that uses the secret key to
transform the plaintext (the original message, typically in a
natural language such as english) into the ciphertext (the
encrypted message that looks like gobbledygook to the
untrained eye).

3. A decryption method, that uses the secret key to transform
the ciphertext into the plaintext.

Problems: key distribution



Symmetric Key Cryptography

All the systems discussed so far are symmetric key
cryptosystems. Such a system consists of:

1. A secret key, i.e. a piece of information that allows for easy
encryption and decryption, secretly shared between sender and
receiver.

2. An encryption method, that uses the secret key to
transform the plaintext (the original message, typically in a
natural language such as english) into the ciphertext (the
encrypted message that looks like gobbledygook to the
untrained eye).

3. A decryption method, that uses the secret key to transform
the ciphertext into the plaintext.

Problems: key distribution



Symmetric Key Cryptography

All the systems discussed so far are symmetric key
cryptosystems. Such a system consists of:

1. A secret key, i.e. a piece of information that allows for easy
encryption and decryption, secretly shared between sender and
receiver.

2. An encryption method, that uses the secret key to
transform the plaintext (the original message, typically in a
natural language such as english) into the ciphertext (the
encrypted message that looks like gobbledygook to the
untrained eye).

3. A decryption method, that uses the secret key to transform
the ciphertext into the plaintext.

Problems: key distribution



Symmetric Key Cryptography

All the systems discussed so far are symmetric key
cryptosystems. Such a system consists of:

1. A secret key, i.e. a piece of information that allows for easy
encryption and decryption, secretly shared between sender and
receiver.

2. An encryption method, that uses the secret key to
transform the plaintext (the original message, typically in a
natural language such as english) into the ciphertext (the
encrypted message that looks like gobbledygook to the
untrained eye).

3. A decryption method, that uses the secret key to transform
the ciphertext into the plaintext.

Problems: key distribution



Symmetric Key Cryptography

system key encryption decryption

Ceasar

Vigenère

ADFGVX

Enigma



Symmetric Key Cryptography

system key encryption decryption

Ceasar shift shift shift
forward backward

Vigenère

ADFGVX

Enigma



Symmetric Key Cryptography

system key encryption decryption

Ceasar shift shift shift
forward backward

Vigenère sequence shift shift
of shifts forward backward

ADFGVX square & complicated! complicated
column order backwards!

Enigma machine press key, press key,
setup read light read light



Security of a cryptosystem

The keyspace is the set of all possible secret keys.

A cryptanalyst tries to break a cryptosystem.
The first, most näıve method is exhaustive search: trying all
possible keys.
key plaintext
0 WFYDAKZLWPL
1 XGZEBLAMXQM
2 YHAFCMBNYRN
3 ZIBGDNCOZSO
4 AJCHEODPATP
5 BKDIFPEQBUQ
6 CLEJGQFRCVR
7 DMFKHRGSDWS
8 ENGLISHTEXT
9 FOHMJTIUFYU
10 GPINKUJVGZV
11 HQJOLVKWHAW
12 IRKPMWLXIBX

key plaintext
13 JSLQNXMYJCY
14 KTMROYNZKDZ
15 LUNSPZOALEA
16 MVOTQAPBMFB
17 NWPURBQCNGC
18 OXQVSCRDOHD
19 PYRWTDSEPIE
20 QZSXUETFQJF
21 RATYVFUGRKG
22 SBUZWGVHSLH
23 TCVAXHWITMI
24 UDWBYIXJUNJ
25 VEXCZJYKVOK



Security of a cryptosystem

The keyspace is the set of all possible secret keys.
A cryptanalyst tries to break a cryptosystem.

The first, most näıve method is exhaustive search: trying all
possible keys.
key plaintext
0 WFYDAKZLWPL
1 XGZEBLAMXQM
2 YHAFCMBNYRN
3 ZIBGDNCOZSO
4 AJCHEODPATP
5 BKDIFPEQBUQ
6 CLEJGQFRCVR
7 DMFKHRGSDWS
8 ENGLISHTEXT
9 FOHMJTIUFYU
10 GPINKUJVGZV
11 HQJOLVKWHAW
12 IRKPMWLXIBX

key plaintext
13 JSLQNXMYJCY
14 KTMROYNZKDZ
15 LUNSPZOALEA
16 MVOTQAPBMFB
17 NWPURBQCNGC
18 OXQVSCRDOHD
19 PYRWTDSEPIE
20 QZSXUETFQJF
21 RATYVFUGRKG
22 SBUZWGVHSLH
23 TCVAXHWITMI
24 UDWBYIXJUNJ
25 VEXCZJYKVOK



Security of a cryptosystem

The keyspace is the set of all possible secret keys.
A cryptanalyst tries to break a cryptosystem.
The first, most näıve method is exhaustive search: trying all
possible keys.

key plaintext
0 WFYDAKZLWPL
1 XGZEBLAMXQM
2 YHAFCMBNYRN
3 ZIBGDNCOZSO
4 AJCHEODPATP
5 BKDIFPEQBUQ
6 CLEJGQFRCVR
7 DMFKHRGSDWS
8 ENGLISHTEXT
9 FOHMJTIUFYU
10 GPINKUJVGZV
11 HQJOLVKWHAW
12 IRKPMWLXIBX

key plaintext
13 JSLQNXMYJCY
14 KTMROYNZKDZ
15 LUNSPZOALEA
16 MVOTQAPBMFB
17 NWPURBQCNGC
18 OXQVSCRDOHD
19 PYRWTDSEPIE
20 QZSXUETFQJF
21 RATYVFUGRKG
22 SBUZWGVHSLH
23 TCVAXHWITMI
24 UDWBYIXJUNJ
25 VEXCZJYKVOK



Security of a cryptosystem

The keyspace is the set of all possible secret keys.
A cryptanalyst tries to break a cryptosystem.
The first, most näıve method is exhaustive search: trying all
possible keys.
key plaintext
0 WFYDAKZLWPL
1 XGZEBLAMXQM
2 YHAFCMBNYRN
3 ZIBGDNCOZSO
4 AJCHEODPATP
5 BKDIFPEQBUQ
6 CLEJGQFRCVR
7 DMFKHRGSDWS
8 ENGLISHTEXT
9 FOHMJTIUFYU
10 GPINKUJVGZV
11 HQJOLVKWHAW
12 IRKPMWLXIBX

key plaintext
13 JSLQNXMYJCY
14 KTMROYNZKDZ
15 LUNSPZOALEA
16 MVOTQAPBMFB
17 NWPURBQCNGC
18 OXQVSCRDOHD
19 PYRWTDSEPIE
20 QZSXUETFQJF
21 RATYVFUGRKG
22 SBUZWGVHSLH
23 TCVAXHWITMI
24 UDWBYIXJUNJ
25 VEXCZJYKVOK



What’s better than exhaustive search?

The number of possible keys: 26!
> 400, 000, 000, 000, 000, 000, 000, 000, 000 = 4× 1026.



What’s better than exhaustive search?

The number of possible keys: 26!

> 400, 000, 000, 000, 000, 000, 000, 000, 000 = 4× 1026.



What’s better than exhaustive search?

The number of possible keys: 26!
> 400, 000, 000, 000, 000, 000, 000, 000, 000 = 4× 1026.



The enigma keyspace

rotors

ring

reflector

plugboard

positions

5 · 4 · 3 · 263 · 24!/(12!212) · 26!/(10!6!210) · 263 ≃ 150 undecillion
789 decillion 931 nonillion 331 octillion 314 septillion 839 sextillion

42 quintillion 76 quadrillion 184 trillion 530 billion 944 million
≃ 1038 keys



The enigma keyspace

rotors

ring

reflector

plugboard

positions

5 · 4 · 3

· 263 · 24!/(12!212) · 26!/(10!6!210) · 263 ≃ 150 undecillion
789 decillion 931 nonillion 331 octillion 314 septillion 839 sextillion

42 quintillion 76 quadrillion 184 trillion 530 billion 944 million
≃ 1038 keys



The enigma keyspace

rotors

ring

reflector

plugboard

positions

5 · 4 · 3 · 263

· 24!/(12!212) · 26!/(10!6!210) · 263 ≃ 150 undecillion
789 decillion 931 nonillion 331 octillion 314 septillion 839 sextillion

42 quintillion 76 quadrillion 184 trillion 530 billion 944 million
≃ 1038 keys



The enigma keyspace

rotors

ring

reflector

plugboard

positions

5 · 4 · 3 · 263 · 24!/(12!212)

· 26!/(10!6!210) · 263 ≃ 150 undecillion
789 decillion 931 nonillion 331 octillion 314 septillion 839 sextillion

42 quintillion 76 quadrillion 184 trillion 530 billion 944 million
≃ 1038 keys



The enigma keyspace

rotors

ring

reflector

plugboard

positions

5 · 4 · 3 · 263 · 24!/(12!212) · 26!/(10!6!210)

· 263 ≃ 150 undecillion
789 decillion 931 nonillion 331 octillion 314 septillion 839 sextillion

42 quintillion 76 quadrillion 184 trillion 530 billion 944 million
≃ 1038 keys



The enigma keyspace

rotors

ring

reflector

plugboard

positions

5 · 4 · 3 · 263 · 24!/(12!212) · 26!/(10!6!210) · 263

≃ 150 undecillion
789 decillion 931 nonillion 331 octillion 314 septillion 839 sextillion

42 quintillion 76 quadrillion 184 trillion 530 billion 944 million
≃ 1038 keys



The enigma keyspace

rotors

ring

reflector

plugboard

positions

5 · 4 · 3 · 263 · 24!/(12!212) · 26!/(10!6!210) · 263 ≃ 150 undecillion

789 decillion 931 nonillion 331 octillion 314 septillion 839 sextillion
42 quintillion 76 quadrillion 184 trillion 530 billion 944 million

≃ 1038 keys



The enigma keyspace

rotors

ring

reflector

plugboard

positions

5 · 4 · 3 · 263 · 24!/(12!212) · 26!/(10!6!210) · 263 ≃ 150 undecillion
789 decillion

931 nonillion 331 octillion 314 septillion 839 sextillion
42 quintillion 76 quadrillion 184 trillion 530 billion 944 million

≃ 1038 keys



The enigma keyspace

rotors

ring

reflector

plugboard

positions

5 · 4 · 3 · 263 · 24!/(12!212) · 26!/(10!6!210) · 263 ≃ 150 undecillion
789 decillion 931 nonillion

331 octillion 314 septillion 839 sextillion
42 quintillion 76 quadrillion 184 trillion 530 billion 944 million

≃ 1038 keys



The enigma keyspace

rotors

ring

reflector

plugboard

positions

5 · 4 · 3 · 263 · 24!/(12!212) · 26!/(10!6!210) · 263 ≃ 150 undecillion
789 decillion 931 nonillion 331 octillion

314 septillion 839 sextillion
42 quintillion 76 quadrillion 184 trillion 530 billion 944 million

≃ 1038 keys



The enigma keyspace

rotors

ring

reflector

plugboard

positions

5 · 4 · 3 · 263 · 24!/(12!212) · 26!/(10!6!210) · 263 ≃ 150 undecillion
789 decillion 931 nonillion 331 octillion 314 septillion

839 sextillion
42 quintillion 76 quadrillion 184 trillion 530 billion 944 million

≃ 1038 keys



The enigma keyspace

rotors

ring

reflector

plugboard

positions

5 · 4 · 3 · 263 · 24!/(12!212) · 26!/(10!6!210) · 263 ≃ 150 undecillion
789 decillion 931 nonillion 331 octillion 314 septillion 839 sextillion

42 quintillion 76 quadrillion 184 trillion 530 billion 944 million
≃ 1038 keys



The enigma keyspace

rotors

ring

reflector

plugboard

positions

5 · 4 · 3 · 263 · 24!/(12!212) · 26!/(10!6!210) · 263 ≃ 150 undecillion
789 decillion 931 nonillion 331 octillion 314 septillion 839 sextillion

42 quintillion

76 quadrillion 184 trillion 530 billion 944 million
≃ 1038 keys



The enigma keyspace

rotors

ring

reflector

plugboard

positions

5 · 4 · 3 · 263 · 24!/(12!212) · 26!/(10!6!210) · 263 ≃ 150 undecillion
789 decillion 931 nonillion 331 octillion 314 septillion 839 sextillion

42 quintillion 76 quadrillion

184 trillion 530 billion 944 million
≃ 1038 keys



The enigma keyspace

rotors

ring

reflector

plugboard

positions

5 · 4 · 3 · 263 · 24!/(12!212) · 26!/(10!6!210) · 263 ≃ 150 undecillion
789 decillion 931 nonillion 331 octillion 314 septillion 839 sextillion

42 quintillion 76 quadrillion 184 trillion

530 billion 944 million
≃ 1038 keys



The enigma keyspace

rotors

ring

reflector

plugboard

positions

5 · 4 · 3 · 263 · 24!/(12!212) · 26!/(10!6!210) · 263 ≃ 150 undecillion
789 decillion 931 nonillion 331 octillion 314 septillion 839 sextillion

42 quintillion 76 quadrillion 184 trillion 530 billion

944 million
≃ 1038 keys



The enigma keyspace

rotors

ring

reflector

plugboard

positions

5 · 4 · 3 · 263 · 24!/(12!212) · 26!/(10!6!210) · 263 ≃ 150 undecillion
789 decillion 931 nonillion 331 octillion 314 septillion 839 sextillion

42 quintillion 76 quadrillion 184 trillion 530 billion 944 million

≃ 1038 keys



The enigma keyspace

rotors

ring

reflector

plugboard

positions

5 · 4 · 3 · 263 · 24!/(12!212) · 26!/(10!6!210) · 263 ≃ 150 undecillion
789 decillion 931 nonillion 331 octillion 314 septillion 839 sextillion

42 quintillion 76 quadrillion 184 trillion 530 billion 944 million
≃ 1038 keys



Cryptanalysis of enigma

A random permutation of the alphabet:

A

B

C

D

E

F

G

H
I

J

K

L M

N
O

P

Q

R

S

T U

V

W

X

Y

Z

Cycle structure: 6-2-2-3-4-7-2



Cryptanalysis of enigma

A random permutation of the alphabet:

A

B

C

D

E

F

G

H
I

J

K

L M

N
O

P

Q

R

S

T U

V

W

X

Y

Z

Cycle structure: 6-2-2-3-4-7-2



Cryptanalysis of enigma

An enigma permutation of the alphabet:

A

B

C

D

E

F

G

H
I

J

K

L M

N
O

P

Q

R

S

T U

V

W

X

Y

Z

Cycle structure: 2-2-2-2-2-2-2-2-2-2-2-2-2



Cryptanalysis of enigma

An enigma permutation of the alphabet:

A

B

C

D

E

F

G

H
I

J

K

L M

N
O

P

Q

R

S

T U

V

W

X

Y

Z

Cycle structure: 2-2-2-2-2-2-2-2-2-2-2-2-2



Cryptanalysis of enigma

Message key: BLA
Encrypted message key (using daily key):

B L A B L A

A G Q W T E

σ1 σ2 σ3 σ4 σ5 σ6

Learned information about σ4 ◦ σ1:

A→W



Cryptanalysis of enigma

Message key: BLA
Encrypted message key (using daily key):

B L A B L A

A G Q W T E

σ1 σ2 σ3 σ4 σ5 σ6

Learned information about σ4 ◦ σ1:

A→W



Cryptanalysis of enigma

Bletchley Park Bombe replica
Antoine Taveneaux, CC BY-SA 3.0 https://creativecommons.org/licenses/by-sa/3.0, via Wikimedia Commons



Advent of Computers: AES (Advanced Encryption
Standard)

Jeongysu, CC BY-SA 3.0 https://creativecommons.org/licenses/by-sa/3.0, via Wikimedia Commons



A new paradigm: public-key cryptography

Sharing secret information across a public channel.

Without any setup (no shared secret beforehand).

How is this even possible?!



A new paradigm: public-key cryptography

Sharing secret information across a public channel.

Without any setup (no shared secret beforehand).

How is this even possible?!



A new paradigm: public-key cryptography

Sharing secret information across a public channel.

Without any setup (no shared secret beforehand).

How is this even possible?!



The door to modern cryptography: modular arithmetic



Diffie-Hellman Key Exchange

Setup: p (modulus), g

Alice Bob

Secret: a Secret: b
ga −→ ga

gb ←− gb

Compute: (gb)a ≡ gab Compute: (ga)b ≡ gab

An eavesdropper Eve can see ga and gb and must compute gab.



Diffie-Hellman Key Exchange

Setup: p (modulus), g

Alice Bob

Secret: a Secret: b
ga −→ ga

gb ←− gb

Compute: (gb)a ≡ gab Compute: (ga)b ≡ gab

An eavesdropper Eve can see ga and gb and must compute gab.



Diffie-Hellman Key Exchange

Setup: p (modulus), g

Alice Bob

Secret: a Secret: b

ga −→ ga

gb ←− gb

Compute: (gb)a ≡ gab Compute: (ga)b ≡ gab

An eavesdropper Eve can see ga and gb and must compute gab.



Diffie-Hellman Key Exchange

Setup: p (modulus), g

Alice Bob

Secret: a Secret: b
ga −→ ga

gb ←− gb

Compute: (gb)a ≡ gab Compute: (ga)b ≡ gab

An eavesdropper Eve can see ga and gb and must compute gab.



Diffie-Hellman Key Exchange

Setup: p (modulus), g

Alice Bob

Secret: a Secret: b
ga −→ ga

gb ←− gb

Compute: (gb)a ≡ gab Compute: (ga)b ≡ gab

An eavesdropper Eve can see ga and gb and must compute gab.



Diffie-Hellman Key Exchange

Setup: p (modulus), g

Alice Bob

Secret: a Secret: b
ga −→ ga

gb ←− gb

Compute: (gb)a ≡ gab Compute: (ga)b ≡ gab

An eavesdropper Eve can see ga and gb and must compute gab.



Diffie-Hellman Key Exchange

Setup: p (modulus), g

Alice Bob

Secret: a Secret: b
ga −→ ga

gb ←− gb

Compute: (gb)a ≡ gab Compute: (ga)b ≡ gab

An eavesdropper Eve can see ga and gb and must compute gab.



Hard Cryptographic Problems
A hard cryptographic problem is:

▶ a mathematical problem (e.g. factoring)

▶ which is believed to be computationally intensive to solve,

▶ and upon which we can build a public-key cryptographic
protocol such as encryption,

▶ whose security is guaranteed by the infeasibility of solving the
problem for inputs of a large size.

The idea for public-key encryption is that

▶ encryption is easy (i.e. fast) using no secret info

▶ decryption is easy for the intended recipient (who has
extra secret info)

▶ decryption is infeasible (i.e. too slow) for anyone else (who
does not have the extra info)

For example, to decrypt a message meant for someone else, it may
require factoring a number so big, that it is expected to take
longer than the length of time before the sun dies.



Hard Cryptographic Problems
A hard cryptographic problem is:

▶ a mathematical problem (e.g. factoring)

▶ which is believed to be computationally intensive to solve,

▶ and upon which we can build a public-key cryptographic
protocol such as encryption,

▶ whose security is guaranteed by the infeasibility of solving the
problem for inputs of a large size.

The idea for public-key encryption is that

▶ encryption is easy (i.e. fast) using no secret info

▶ decryption is easy for the intended recipient (who has
extra secret info)

▶ decryption is infeasible (i.e. too slow) for anyone else (who
does not have the extra info)

For example, to decrypt a message meant for someone else, it may
require factoring a number so big, that it is expected to take
longer than the length of time before the sun dies.



Hard Cryptographic Problems
A hard cryptographic problem is:

▶ a mathematical problem (e.g. factoring)

▶ which is believed to be computationally intensive to solve,

▶ and upon which we can build a public-key cryptographic
protocol such as encryption,

▶ whose security is guaranteed by the infeasibility of solving the
problem for inputs of a large size.

The idea for public-key encryption is that

▶ encryption is easy (i.e. fast) using no secret info

▶ decryption is easy for the intended recipient (who has
extra secret info)

▶ decryption is infeasible (i.e. too slow) for anyone else (who
does not have the extra info)

For example, to decrypt a message meant for someone else, it may
require factoring a number so big, that it is expected to take
longer than the length of time before the sun dies.



Hard Cryptographic Problems
A hard cryptographic problem is:

▶ a mathematical problem (e.g. factoring)

▶ which is believed to be computationally intensive to solve,

▶ and upon which we can build a public-key cryptographic
protocol such as encryption,

▶ whose security is guaranteed by the infeasibility of solving the
problem for inputs of a large size.

The idea for public-key encryption is that

▶ encryption is easy (i.e. fast) using no secret info

▶ decryption is easy for the intended recipient (who has
extra secret info)

▶ decryption is infeasible (i.e. too slow) for anyone else (who
does not have the extra info)

For example, to decrypt a message meant for someone else, it may
require factoring a number so big, that it is expected to take
longer than the length of time before the sun dies.



Hard Cryptographic Problems
A hard cryptographic problem is:

▶ a mathematical problem (e.g. factoring)

▶ which is believed to be computationally intensive to solve,

▶ and upon which we can build a public-key cryptographic
protocol such as encryption,

▶ whose security is guaranteed by the infeasibility of solving the
problem for inputs of a large size.

The idea for public-key encryption is that

▶ encryption is easy (i.e. fast) using no secret info

▶ decryption is easy for the intended recipient (who has
extra secret info)

▶ decryption is infeasible (i.e. too slow) for anyone else (who
does not have the extra info)

For example, to decrypt a message meant for someone else, it may
require factoring a number so big, that it is expected to take
longer than the length of time before the sun dies.



Hard Cryptographic Problems
A hard cryptographic problem is:

▶ a mathematical problem (e.g. factoring)

▶ which is believed to be computationally intensive to solve,

▶ and upon which we can build a public-key cryptographic
protocol such as encryption,

▶ whose security is guaranteed by the infeasibility of solving the
problem for inputs of a large size.

The idea for public-key encryption is that

▶ encryption is easy (i.e. fast) using no secret info

▶ decryption is easy for the intended recipient (who has
extra secret info)

▶ decryption is infeasible (i.e. too slow) for anyone else (who
does not have the extra info)

For example, to decrypt a message meant for someone else, it may
require factoring a number so big, that it is expected to take
longer than the length of time before the sun dies.



Hard Cryptographic Problems
A hard cryptographic problem is:

▶ a mathematical problem (e.g. factoring)

▶ which is believed to be computationally intensive to solve,

▶ and upon which we can build a public-key cryptographic
protocol such as encryption,

▶ whose security is guaranteed by the infeasibility of solving the
problem for inputs of a large size.

The idea for public-key encryption is that

▶ encryption is easy (i.e. fast) using no secret info

▶ decryption is easy for the intended recipient (who has
extra secret info)

▶ decryption is infeasible (i.e. too slow) for anyone else (who
does not have the extra info)

For example, to decrypt a message meant for someone else, it may
require factoring a number so big, that it is expected to take
longer than the length of time before the sun dies.



Hard Cryptographic Problems
A hard cryptographic problem is:

▶ a mathematical problem (e.g. factoring)

▶ which is believed to be computationally intensive to solve,

▶ and upon which we can build a public-key cryptographic
protocol such as encryption,

▶ whose security is guaranteed by the infeasibility of solving the
problem for inputs of a large size.

The idea for public-key encryption is that

▶ encryption is easy (i.e. fast) using no secret info

▶ decryption is easy for the intended recipient (who has
extra secret info)

▶ decryption is infeasible (i.e. too slow) for anyone else (who
does not have the extra info)

For example, to decrypt a message meant for someone else, it may
require factoring a number so big, that it is expected to take
longer than the length of time before the sun dies.



Hard Cryptographic Problems
A hard cryptographic problem is:

▶ a mathematical problem (e.g. factoring)

▶ which is believed to be computationally intensive to solve,

▶ and upon which we can build a public-key cryptographic
protocol such as encryption,

▶ whose security is guaranteed by the infeasibility of solving the
problem for inputs of a large size.

The idea for public-key encryption is that

▶ encryption is easy (i.e. fast) using no secret info

▶ decryption is easy for the intended recipient (who has
extra secret info)

▶ decryption is infeasible (i.e. too slow) for anyone else (who
does not have the extra info)

For example, to decrypt a message meant for someone else, it may
require factoring a number so big, that it is expected to take
longer than the length of time before the sun dies.



Hard Cryptographic Problems
A hard cryptographic problem is:

▶ a mathematical problem (e.g. factoring)

▶ which is believed to be computationally intensive to solve,

▶ and upon which we can build a public-key cryptographic
protocol such as encryption,

▶ whose security is guaranteed by the infeasibility of solving the
problem for inputs of a large size.

The idea for public-key encryption is that

▶ encryption is easy (i.e. fast) using no secret info

▶ decryption is easy for the intended recipient (who has
extra secret info)

▶ decryption is infeasible (i.e. too slow) for anyone else (who
does not have the extra info)

For example, to decrypt a message meant for someone else, it may
require factoring a number so big, that it is expected to take
longer than the length of time before the sun dies.



Warning

We don’t actually know they are hard!



Hard Cryptographic Problems

The Computational Diffie-Hellman Problem:
Given ga, gb (mod p), compute gab.

▶ Typical algorithms take around
√
p time.

▶ Human record: p of 795 bits using 3100 core-years

▶ Standard internet security: 1024 bits

▶ Logjam attack: 512 bits attacked in the wild

▶ (Why did Logjam work? Big swaths of the internet were using
the same prime!)



RSA: Rivest-Shamir-Adelman

The Factoring Problem:
Given an integer n = pq for p and q prime, find p and q.

▶ Human record: n ∼ 2829.

▶ Standard internet security: n ∼ 22048.



How big is 22048?



How big is 22048?



How big is 22048?

Estimate each quantity as a power of two (and put them in order!)

▶ The number of atoms in the universe.

▶ The number of cells in a human body.

▶ The number of insects per human on earth.

▶ The number of seconds until the sun dies.



How big is 22048?

▶ The number of insects per human on earth: 228 ∼ 200 million.

▶ The number of cells in a human body: 245 ∼ 37.2 trillion.

▶ The number of seconds until the sun dies: 257 ∼ 7.5 billion
years.

▶ The number of atoms in the universe: 2266 ∼ 1080 ∼ 100
quadrillion vigintillion.



How big is 22048?

▶ The number of insects per human on earth: 228 ∼ 200 million.

▶ The number of cells in a human body: 245 ∼ 37.2 trillion.

▶ The number of seconds until the sun dies: 257 ∼ 7.5 billion
years.

▶ The number of atoms in the universe: 2266 ∼ 1080 ∼ 100
quadrillion vigintillion.



How big is 22048?

▶ The number of insects per human on earth: 228 ∼ 200 million.

▶ The number of cells in a human body: 245 ∼ 37.2 trillion.

▶ The number of seconds until the sun dies: 257 ∼ 7.5 billion
years.

▶ The number of atoms in the universe: 2266 ∼ 1080 ∼ 100
quadrillion vigintillion.



How big is 22048?

▶ The number of insects per human on earth: 228 ∼ 200 million.

▶ The number of cells in a human body: 245 ∼ 37.2 trillion.

▶ The number of seconds until the sun dies: 257 ∼ 7.5 billion
years.

▶ The number of atoms in the universe: 2266 ∼ 1080 ∼ 100
quadrillion vigintillion.



How big is 22048?

▶ The number of insects per human on earth: 228 ∼ 200 million.

▶ The number of cells in a human body: 245 ∼ 37.2 trillion.

▶ The number of seconds until the sun dies: 257 ∼ 7.5 billion
years.

▶ The number of atoms in the universe: 2266 ∼ 1080 ∼ 100
quadrillion vigintillion.



More modern cryptography: Elliptic Curve Cryptography

Do your computations with a crazy group called an

elliptic curve.



The Quantum Age

▶ When will we have quantum computers?

▶ The unit of measure is decades.

▶ What can they do?
▶ They can factor and solve discrete logarithm too quickly:

break all of current cryptography.

▶ What are we doing about it?
▶ NIST is standarizing new protols based on new hard problems

that are believed to be quantum-safe.

We will study quantum cryptography, quantum algorithms and
post-quantum cryptography.



The Quantum Age

▶ When will we have quantum computers?
▶ The unit of measure is decades.

▶ What can they do?
▶ They can factor and solve discrete logarithm too quickly:

break all of current cryptography.

▶ What are we doing about it?
▶ NIST is standarizing new protols based on new hard problems

that are believed to be quantum-safe.

We will study quantum cryptography, quantum algorithms and
post-quantum cryptography.



The Quantum Age

▶ When will we have quantum computers?
▶ The unit of measure is decades.

▶ What can they do?

▶ They can factor and solve discrete logarithm too quickly:
break all of current cryptography.

▶ What are we doing about it?
▶ NIST is standarizing new protols based on new hard problems

that are believed to be quantum-safe.

We will study quantum cryptography, quantum algorithms and
post-quantum cryptography.



The Quantum Age

▶ When will we have quantum computers?
▶ The unit of measure is decades.

▶ What can they do?
▶ They can factor and solve discrete logarithm too quickly:

break all of current cryptography.

▶ What are we doing about it?
▶ NIST is standarizing new protols based on new hard problems

that are believed to be quantum-safe.

We will study quantum cryptography, quantum algorithms and
post-quantum cryptography.



The Quantum Age

▶ When will we have quantum computers?
▶ The unit of measure is decades.

▶ What can they do?
▶ They can factor and solve discrete logarithm too quickly:

break all of current cryptography.

▶ What are we doing about it?

▶ NIST is standarizing new protols based on new hard problems
that are believed to be quantum-safe.

We will study quantum cryptography, quantum algorithms and
post-quantum cryptography.



The Quantum Age

▶ When will we have quantum computers?
▶ The unit of measure is decades.

▶ What can they do?
▶ They can factor and solve discrete logarithm too quickly:

break all of current cryptography.

▶ What are we doing about it?
▶ NIST is standarizing new protols based on new hard problems

that are believed to be quantum-safe.

We will study quantum cryptography, quantum algorithms and
post-quantum cryptography.



The Quantum Age

▶ When will we have quantum computers?
▶ The unit of measure is decades.

▶ What can they do?
▶ They can factor and solve discrete logarithm too quickly:

break all of current cryptography.

▶ What are we doing about it?
▶ NIST is standarizing new protols based on new hard problems

that are believed to be quantum-safe.

We will study quantum cryptography, quantum algorithms and
post-quantum cryptography.



Bonus: Whirlwind tour of coding theory

Image: the editors of encyclopedia britannica, CC BY-SA 4.0 https://creativecommons.org/licenses/by-sa/4.0, via
Wikimedia Commons



Coding Theory

▶ What is coding theory for? (What problem are we solving?)

▶ Real-life channels (radio, cell phone, copper wires) are noisy.
▶ We want to send messages in such a way that errors won’t

prevent understanding.
▶ Usually we model a channel as something that randomly flips

bits of our binary message (errors).
▶ Nothing to do with secrecy.



Coding Theory

▶ What is coding theory for? (What problem are we solving?)
▶ Real-life channels (radio, cell phone, copper wires) are noisy.

▶ We want to send messages in such a way that errors won’t
prevent understanding.

▶ Usually we model a channel as something that randomly flips
bits of our binary message (errors).

▶ Nothing to do with secrecy.



Coding Theory

▶ What is coding theory for? (What problem are we solving?)
▶ Real-life channels (radio, cell phone, copper wires) are noisy.
▶ We want to send messages in such a way that errors won’t

prevent understanding.

▶ Usually we model a channel as something that randomly flips
bits of our binary message (errors).

▶ Nothing to do with secrecy.



Coding Theory

▶ What is coding theory for? (What problem are we solving?)
▶ Real-life channels (radio, cell phone, copper wires) are noisy.
▶ We want to send messages in such a way that errors won’t

prevent understanding.
▶ Usually we model a channel as something that randomly flips

bits of our binary message (errors).

▶ Nothing to do with secrecy.



Coding Theory

▶ What is coding theory for? (What problem are we solving?)
▶ Real-life channels (radio, cell phone, copper wires) are noisy.
▶ We want to send messages in such a way that errors won’t

prevent understanding.
▶ Usually we model a channel as something that randomly flips

bits of our binary message (errors).
▶ Nothing to do with secrecy.



Coding Theory

▶ What is coding theory?

▶ We change our message (encoding) so that it is error
resistant.

▶ We send codewords instead of plaintext symbols.
▶ Example: ‘Victor’ instead of ‘V’ (radio) or ‘000’ instead of ‘0’

(a repeat code)
▶ The receiver must decode



Coding Theory

▶ What is coding theory?
▶ We change our message (encoding) so that it is error

resistant.

▶ We send codewords instead of plaintext symbols.
▶ Example: ‘Victor’ instead of ‘V’ (radio) or ‘000’ instead of ‘0’

(a repeat code)
▶ The receiver must decode



Coding Theory

▶ What is coding theory?
▶ We change our message (encoding) so that it is error

resistant.
▶ We send codewords instead of plaintext symbols.

▶ Example: ‘Victor’ instead of ‘V’ (radio) or ‘000’ instead of ‘0’
(a repeat code)

▶ The receiver must decode



Coding Theory

▶ What is coding theory?
▶ We change our message (encoding) so that it is error

resistant.
▶ We send codewords instead of plaintext symbols.
▶ Example: ‘Victor’ instead of ‘V’ (radio) or ‘000’ instead of ‘0’

(a repeat code)

▶ The receiver must decode



Coding Theory

▶ What is coding theory?
▶ We change our message (encoding) so that it is error

resistant.
▶ We send codewords instead of plaintext symbols.
▶ Example: ‘Victor’ instead of ‘V’ (radio) or ‘000’ instead of ‘0’

(a repeat code)
▶ The receiver must decode



Coding Theory

▶ What makes a good code?

▶ Strong error correction: the number of errors a codeword can
absorb and still be guessed correctly (e.g. ‘010’ is probably ‘0’
not ‘1’)

▶ Strong efficiency: not too much space inflation (codewords
are longer than the symbols they represent)

▶ What math goes into it?
▶ Finite fields, linear algebra



Coding Theory

▶ What makes a good code?
▶ Strong error correction: the number of errors a codeword can

absorb and still be guessed correctly (e.g. ‘010’ is probably ‘0’
not ‘1’)

▶ Strong efficiency: not too much space inflation (codewords
are longer than the symbols they represent)

▶ What math goes into it?
▶ Finite fields, linear algebra



Coding Theory

▶ What makes a good code?
▶ Strong error correction: the number of errors a codeword can

absorb and still be guessed correctly (e.g. ‘010’ is probably ‘0’
not ‘1’)

▶ Strong efficiency: not too much space inflation (codewords
are longer than the symbols they represent)

▶ What math goes into it?

▶ Finite fields, linear algebra



Coding Theory

▶ What makes a good code?
▶ Strong error correction: the number of errors a codeword can

absorb and still be guessed correctly (e.g. ‘010’ is probably ‘0’
not ‘1’)

▶ Strong efficiency: not too much space inflation (codewords
are longer than the symbols they represent)

▶ What math goes into it?
▶ Finite fields, linear algebra



Your semester ahead

▶ About me: a number theorist and cryptographer (cryptanalyst
mostly) studying post-quantum cryptography, elliptic-curve
cryptography etc.

▶ Course modules:
▶ Paradigms, history and application
▶ Modular arithmetic & discrete logarithm
▶ Euclidean algorithm, primality testing & factoring
▶ Finite fields & elliptic curve cryptography
▶ Coding theory & lattice-based cryptography
▶ Quantum aspects

▶ Course style: Daily assignments, regular quizzes, poster
project, self-evaluation

▶ https://crypto.katestange.net (linked in canvas) / discord

▶ contingency plan: last-minute modality change

▶ recording class



Your semester ahead

▶ About me: a number theorist and cryptographer (cryptanalyst
mostly) studying post-quantum cryptography, elliptic-curve
cryptography etc.

▶ Course modules:
▶ Paradigms, history and application
▶ Modular arithmetic & discrete logarithm
▶ Euclidean algorithm, primality testing & factoring
▶ Finite fields & elliptic curve cryptography
▶ Coding theory & lattice-based cryptography
▶ Quantum aspects

▶ Course style: Daily assignments, regular quizzes, poster
project, self-evaluation

▶ https://crypto.katestange.net (linked in canvas) / discord

▶ contingency plan: last-minute modality change

▶ recording class



Your semester ahead

▶ About me: a number theorist and cryptographer (cryptanalyst
mostly) studying post-quantum cryptography, elliptic-curve
cryptography etc.

▶ Course modules:
▶ Paradigms, history and application
▶ Modular arithmetic & discrete logarithm
▶ Euclidean algorithm, primality testing & factoring
▶ Finite fields & elliptic curve cryptography
▶ Coding theory & lattice-based cryptography
▶ Quantum aspects

▶ Course style: Daily assignments, regular quizzes, poster
project, self-evaluation

▶ https://crypto.katestange.net (linked in canvas) / discord

▶ contingency plan: last-minute modality change

▶ recording class



Your semester ahead

▶ About me: a number theorist and cryptographer (cryptanalyst
mostly) studying post-quantum cryptography, elliptic-curve
cryptography etc.

▶ Course modules:
▶ Paradigms, history and application
▶ Modular arithmetic & discrete logarithm
▶ Euclidean algorithm, primality testing & factoring
▶ Finite fields & elliptic curve cryptography
▶ Coding theory & lattice-based cryptography
▶ Quantum aspects

▶ Course style: Daily assignments, regular quizzes, poster
project, self-evaluation

▶ https://crypto.katestange.net (linked in canvas) / discord

▶ contingency plan: last-minute modality change

▶ recording class



Your semester ahead

▶ About me: a number theorist and cryptographer (cryptanalyst
mostly) studying post-quantum cryptography, elliptic-curve
cryptography etc.

▶ Course modules:
▶ Paradigms, history and application
▶ Modular arithmetic & discrete logarithm
▶ Euclidean algorithm, primality testing & factoring
▶ Finite fields & elliptic curve cryptography
▶ Coding theory & lattice-based cryptography
▶ Quantum aspects

▶ Course style: Daily assignments, regular quizzes, poster
project, self-evaluation

▶ https://crypto.katestange.net (linked in canvas) / discord

▶ contingency plan: last-minute modality change

▶ recording class



Your semester ahead

▶ About me: a number theorist and cryptographer (cryptanalyst
mostly) studying post-quantum cryptography, elliptic-curve
cryptography etc.

▶ Course modules:
▶ Paradigms, history and application
▶ Modular arithmetic & discrete logarithm
▶ Euclidean algorithm, primality testing & factoring
▶ Finite fields & elliptic curve cryptography
▶ Coding theory & lattice-based cryptography
▶ Quantum aspects

▶ Course style: Daily assignments, regular quizzes, poster
project, self-evaluation

▶ https://crypto.katestange.net (linked in canvas) / discord

▶ contingency plan: last-minute modality change

▶ recording class


