Graph Theory

November 15, 2015

1 Warmup: Cycle graphs

Definition 1. The cycle graph C_n is the graph given by the following data:

$$V_G = \{v_1, v_2, \dots, v_n\}$$
$$E_G = \{e_1, e_2, \dots, e_n\}$$
$$\epsilon(e_i) = \{v_i, v_{i+1}\},$$

where the indices in the last line are interpreted modulo n.

1. Draw C_n for n = 0, 1, 2, 3, 4, 5.

- 2. Is C_n simple?
- 3. Is C_n bipartite?
- 4. Does C_n have an Eulerian circuit? How many?
- 5. Does C_n have a Hamiltonian cycle? How many?
- 6. Is C_n connected? Prove it (from the definition).
- 7. How many walks of length 3 are there in C_n ?
- 8. How many paths of length 3 are there?
- 9. How many trails of length 3 are there?
- 10. Compute the adjacency matrix A of C_n .
- 11. Without doing any matrix multiplications, compute A^{n-1} .

- 12. Suppose the edge e_i is given the weight *i*. What spanning tree does one obtain from the greedy algorithm?
- 13. How many spanning trees does C_n have (from the definition).
- 14. Prove the last item using the Matrix Tree Theorem we saw in class. (Hint: figure out a recursion for the determinants.)

2 Bipartite graphs

Definition 2. The bipartite graph $K_{n,m}$ is the graph given by the following data:

$$V_G = \{v_1, v_2, \dots, v_n\} \cup \{w_1, w_2, \dots, w_m\}$$
$$E_G = \{e_{i,j} : 1 \le i \le n, 1 \le j \le m\}$$
$$\epsilon(e_{i,j}) = \{v_i, w_j\} \text{ for all } 1 \le i \le n, 1 \le j \le m.$$

1. Draw $K_{1,1}, K_{2,3}, K_{4,2}$ and $K_{0,1}$.

2. Does $K_{n,m}$ have an Eulerian circuit?

3. Does $K_{n,m}$ have a Hamiltonian cycle?

4. Compute the adjacency matrix of $K_{n,m}$.

5. Compute the number of paths of length 1.

6. Compute the number of paths of length 2.

7. Prove that $K_{n,m}$ is connected. (Any method.)

8. Count the number of spanning trees of $K_{n,m}$.