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1. Preface

This document will be updated throughout the semester.

2. Problems in Number Theory

Number theory may be loosely defined as the study of the integers:
in particular, the interaction between their additive and multiplicative
structures. However, modern number theory is often described as the
study of such objects as algebraic number fields and elliptic curves,
which we have invented in order to answer elementary questions about
the integers. Therefore, an argument can be made that the best way to
define number theory is to exhibit some of these motivational problems.

2.1. Are there infinitely many primes? Yes, and you are invited
to invent your own proofs of this fact (there are many). More generally,
we study how many primes there are up to x (call this number π(x)).

The Prime Number Theorem (Hadamard and De La Vallée Poussin,
1896) famously states that π(x) ∼ x/ log x, or actually the slightly
better approximation π(x) ∼ Li(x) =

∫ x
2

dt
log t

. The ∼ notation indicates

that the ratio of the two functions tends to 1 in the limit. This growth
rate, as a conjecture, goes back to Dirichlet and Gauss around 1800.

This doesn’t answer the question completely, however: it is a nev-
erending problem to analyse the error term in closer and closer detail.
The famous unproven Riemann Hypothesis, in one form, states that

π(x) = Li(x) +O(x1/2 log x).

This is “big O” notation, and it means that π(x)− Li(x) is eventually
bounded above by a constant multiple of x1/2 log x.

You’ve probably heard of the Riemann Hypothesis in another form,
concerning the location of zeroes of the zeta function on the complex
plane. (In fact, proofs of the prime number theorem all depended on
complex analysis until a proof of Selberg and Erdös in 1949!) More on
the mathematical details later, but it is worth mentioning that this is
considered one of the premier unsolved problems in modern mathemat-
ics, and that most mathematicians both firmly believe the hypothesis
and yet don’t believe it will be proven in our lifetimes. It has so many
powerful consequences in number theory, that the result must lie very
deep. There are a great many research papers which prove results
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conditional on various forms of the Riemann Hypothesis; hundreds of
results will suddenly be unconditionally true when a proof is eventually
found.

2.2. Is there a closed formula for the n-th prime? Believe it or
not, there are some contenders, but they are not simple. Willans gives
the formula

pn = 1 +
2n∑
m=1

 n
√
n

(
m∑
x=1

⌊
cos2 π

(x− 1)! + 1

x

⌋)−1/n
 ,

which is certainly a closed formula in some sense. It is a sort of obfusca-
tion of the relationship between pn and π(x), using Wilson’s theorem.

Theorem 2.1 (Wilson’s Theorem). p is prime or 1 if and only if
(p− 1)! ≡ −1 (mod p).

It is, however, not particularly useful for computation, so in some
sense it is not a satisfactory answer.

2.3. Is there a (possibly multivariate) polynomial that gives
only primes when evaluated on all integer inputs? No. However,
there are multivariate polynomials whose positive values are exactly
all the primes, as the variables range over natural numbers. Such a
polynomial in 26 variables, due to Jones, Sato, Wada and Wiens, is

(k + 2)(1− [wz + h+ j − q]2 − [(gk + 2g + k + 1)(h+ j) + h− z]2−
[16(k + 1)3(k + 2)(n+ 1)2 + 1− f 2]2 − [2n+ p+ q + z − e]2−

[e3(e+ 2)(a+ 1)2 + 1− o2]2 − [(a2 − 1)y2 + 1− x2]2−
[16r2y4(a2 − 1) + 1− u2]2 − [n+ l + v − y]2−
[(a2 − 1)l2 + 1−m2]2 − [ai+ k + 1− l − i]2−

[((a+ u2(u2 − a))2 − 1)(n+ 4dy)2 + 1− (x+ cu)2]2−
[p+ l(a− n− 1) + b(2an+ 2a− n2 − 2n− 2)−m]2−
[q + y(a− p− 1) + s(2ap+ 2a− p2 − 2p− 2)− x]2−

[z + pl(a− p) + t(2ap− p2 − 1)− pm]2)

If you prefer fewer variables, you can get down to 10 variables if you
let the degree go up to 15905. The proof is based on the logical notion
of a Diophantine set.
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2.4. Are there infinitely many primes of the form 4n+ 1? Yes.
More generally, there are infinitely many primes of the form an + b
for any coprime a and b. This is Dirichlet’s celebrated theorem on
arithmetic progressions (1837). We won’t cover the proof; it’s more
typically done in your analytic number theory course. However, there
is a sense in which this question lies very much in the realm of algebraic
number theory, and we will touch on related topics. In general, we
expect about half of all primes to be congruent to 1 modulo 4 and the
other half to be congruent to 3 mod 4. However, there are more in
the former category, in the sense that, counting up to N , the former
category is usually larger. See ‘Prime Number Races’ by Granville and
Martin (American Mathematical Monthly).

2.5. Are there infinitely many primes of the form n2 + 1? The
more general question is a variation on the polynomial that produces
only primes – but we now require only that it produce infinitely many
primes. It is unknown for any quadratic polynomial. Iwaniec has shown
that there are infinitely many n for which n2 + 1 is the product of at
most two primes.

Ulam noticed that if you draw the primes in a spiral around the
origin on a square grid, it looks far from random. The integers which
are values of quadratic polynomials eventually head out along diagonal
lines. The most visible diagonal on his spiral is n2 + n + 41, which is
prime for 0 ≤ n < 40 (but not for n = 40).
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2.6. Are there infinitely many primes p for which p+2 is prime?
This is the famous twin primes conjecture (in the affirmative). It is still
unsolved. More generally, one can ask how often f1(x) and f2(x) are
simultaneously prime for some polynomials f1 and f2. Of course, there
are infinitely many pairs of integers a, d such that a and a+d are prime;
we just don’t know if we can take d = 2 infinitely often. In fact, van der
Corput showed there are infinitely many 3-term arithmetic progressions
in 1929. In 2004, Green and Tao showed there are infinitely many
length k arithmetic progressions for all k.

Why do we think the answer is yes? This is an example of a per-
vasive heuristic argument in number theory. Using the Prime Number
Theorem, we can guess that the ‘probability’ of a number x between 1
and N being prime is about 1/ logN . Therefore, we expect the chance
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that both x and x+2 are prime is about 1/ log2N : there will be about
N/ log2N twin prime pairs below N .

But wait, this also predicts that there are infinitely many primes p
such that p + 1 is prime! Refine the model: odd numbers between 1
and N have a 2/ logN chance of being prime, while even ones have a 0
chance. Refine it for multiples of 3, of 5, etc. and eventually we obtain
a count of twin primes that is

2
∏

p odd prime

(
1− 1

(p− 1)2

)
N

log2N
.

Not seeing any obvious reasons this is wrong, we conjecture this as the
growth rate of twin primes. This relies on the oft-used heuristic that,
having identified the ‘obvious’ ways in which primes are not random
(congruence conditions, like most even numbers are not prime), they
are otherwise entirely random!

Chen has shown in the 70’s that there are infinitely many primes p
such that p + 2 is a product of at most two primes. This uses ‘sieve
methods’.

2.7. Are there any quadratic forms with integer coefficients
which represent all positive integers? The answer is no, for bi-
nary and ternary forms. You will see in an introductory algebraic
number theory course a classification of which integers are the sum of
two squares; this fundamental result goes back to Fermat in 1640, but
an elementary proof is not very easy.

Lagrange showed in 1770 that every positive integer is the sum of
four squares. For quaternary and higher, it has been proven by Bhar-
gava and Hanke (the ‘290 theorem’ in 2005), that to determine if a
form is ‘universal’ in this manner, it suffices to determine if it repre-
sents 1, 2, . . . , 290. (This came after the ‘15 theorem’ of Conway and
Schneeberger which applies to so called ‘matrix-integral’ forms; i.e.
forms whose non-diagonal coefficients are even.)

2.8. Is there an algorithm to determine if a given polynomial
equation in any number of variables has an integer solution?
This is Hilbert’s 10th Problem. Actually, he asked the audience to de-
vise such a process, as it came as quite a surprise that the answer would
be NO. This is a celebrated result of Davis, Matiyasevich, Putnam and
Robinson. The existence of a polynomial whose positive values on nat-
ural numbers are all the primes is a corollary. The proof lies in the
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realm of logic, and uses facts about the Fibonacci numbers in an essen-
tial way. For a wonderful read, see the book “Hilbert’s Tenth Problem,”
by Matiyasevich.

The same question for rationals, in place of integers, is an open
problem.

2.9. Does there exist a deterministic polynomial-time algo-
rithm (in the number of digits) to determine if n is prime?
A first method would be to check all divisors up to

√
n; this takes

O(
√
n) time. At first glance, Fermat’s Little Theorem seems a promis-

ing criterion.

Theorem 2.2 (Fermat’s Little Theorem). For any prime p and a co-
prime to p,

ap−1 ≡ 1 (mod p).

However, many composite n also satisfy this equation for some a. If
a composite n satisfies this equation for all coprime a, then it is called
a Carmichael number, about which there are many questions (there are
infinitely many such numbers).

In 1975, a deterministic polynomial time-algorithm was given by
Miller, but this is only assuming the Extended Riemann Hypothesis1.
Around the same time some randomized polynomial-time algorithms
were discovered (meaning it can return NO when it should return YES,
but with random probability < 1/2), and many more have appeared
since. Finally, in 2002, Agrawal, Kayal and Saxena found the desired
algorithm, running in O(log15/2 n) time.

2.10. Can we factor numbers in deterministic polynomial time?
A good reference on this extensive subject is the book “Prime Num-
bers: A Computational Perspective,” by Crandall and Pomerance. The
quick answer is that there are sub-exponential algorithms known since
the 70’s, but no polynomial time algorithms, even under various gen-
eralised Riemann Hypotheses. However, there does not seem to be any
evidence indicating that it is not possible, besides the fact that we have
tried and failed, especially since the 70’s. However, there are a great
many very interesting algorithms, some of which we will meet in this

1A note on the Extended Riemann Hypothesis. The terminology on the various
extensions of the Riemann Hypothesis is confusing; see the book “The Riemann
hypothesis: a resource for the afficionado and virtuoso alike,” by Peter Borwein,
Stephen Choi, Brendan Rooney and Andrea Weirathmueller. The version used here
is the usual critical-strip statement, applied to some particular Dirichlet L-functions
(but not all).
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class. With current methods, we can factor integers up to about 232
decimal digits (it took two years / 2000 computing years in 2009).

What complexity class is it? P refers to problems for which there
are polynomial time algorithms. NP refers to problems for which a
correct answer can be verified in polynomial time. Because of the AKS
primality testing algorithm of 2005 (see above), factoring is in NP .
Famously, we do not know if P = NP .

2.11. Up to N , are there always more natural numbers with
an odd number of prime factors than with an even number of
prime factors? This is known as the Pólya Conjecture, and it seems
heuristically reasonable that ‘most’ integers have an odd number of
prime factors. It has important consequences in number theory and
was widely believed between 1919 (when the conjecture was made) and
1958, when Haselgrove showed that it is false for infinitely many N .
It is true until N = 906, 150, 257, when it fails. Never trust numerical
evidence.

2.12. Does x2−1141y2 = 1 have infinitely many solutions? (Note:
if you ask the computer to check up to 25 digits, it will find
none.) As another example of misleading numerical evidence, the first
solution to x2−1141y2 = 1 has y of 26 digits; there are infinitely many
solutions. This is an example of a Pell equation (another topic we could
see in this course). For more examples of ‘The Strong Law of Small
Numbers’ (don’t trust them), see Richard Guy’s article by the same
name.

2.13. For any irrational number α, are there infinitely many
rational numbers p/q such that |α − p/q| < 1/q2? True for all
irrational α; this is an application of the pigeonhole principle due to
Dirichlet. It is Fields Medal work that for any algebraic α, there are
only finitely many p/q such that |α− p/q| < 1/q2+ε (Roth’s Theorem,
1955). This is the fundamental question of the area called Diophantine
approximation.

2.14. Given n, if it is even, divide by 2 and if it is odd, return
3n + 1; if we iterate this rule, must we eventually reach the
loop 1 → 4 → 2 → 1? This is known as the Collatz Conjecture, and
it is famous for driving mathematicians crazy in every mathematical
discipline. It is an open question, and it is not clear which methods
will resolve it.
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2.15. Given a real number α > 0, if it is > 1, then subtract 1
and if it is < 1, then invert it; if we iterate this rule, must we
eventually reach a loop? The process above expresses any α as a
continued fraction:

α = a1 +
1

a2 + 1
a3+ 1

a4+···

Every real number has a continued fraction expansion. The ai are
eventually periodic (corresponding to a loop in the dynamical system
of the question), if and only if α is rational or quadratic. A few famous
continued fraction expansions are:

e = 2 +
1

1 + 1
2+ 1

1+ 1

1+ 1

4+ 1

1+ 1

1+ 1
6+···

which has the pattern 2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, . . ., and

π = 3 +
1

7 + 1
15+ 1

1+ 1

292+ 1

1+ 1

1+ 1

1+ 1
2+···

which has no discernable pattern. Chopping off the fraction at any
finite point, we obtain good rational approximations to α; in fact, these
are the best rational approximations of Dirichlet’s theorem above!

3. Some numerical experiments and Sage

We played with Sage in class; worksheets are on the website. Our
goal was to collect some data on some of the motivating questions for
this class, in a homework assignment.

• Which integers are the sums of two squares? This ques-
tion (which can be viewed as an instance of a Diophantine
equation) is among the simplest of questions relating the mul-
tiplicative structure of the integers to its additive structure. (A
Diophantine equation is a polynomial equation for which we
seek integer solutions. You could ask about the Diophantine
equation z = x2 + y2 in three variables, or about the family of
Diophantine equations c = x2 + y2 in two variables as c varies,
for example.) It is also a key to all sorts of interesting number
theory, particularly to algebraic number theory.
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• What is the distribution of the prime numbers? This is
the first and most natural question leading to analytic number
theory. It leads into all sorts of other ‘statistical’ questions, like:
How many divisors do integers have on average?
• Which numbers are squares modulo a prime? To un-

derstand Z, it often makes sense to look ‘at one prime at a
time.’ The ring Z/pZ is not as simple as you think. One of the
‘golden theorems’ of number theory provides a sort of answer
to this question.
• How hard is it to find primes and factor numbers? This

question, in its most concrete sense, is hugely important for
modern cryptographic methods. If someone finds a fast factor-
ing algorithm tomorrow, they could access all sorts of secret
data kept by individuals and governments.

We computed and made conjectures concerning some of these ques-
tions (homework).

4. Multiplicative arithmetic functions and Möbius
inversion

Definition 4.1. Define the following two functions v, σ : Z+ → Z+, by

v(n) = the number of positive divisors of n,

σ(n) = the sum of the positive divisors of n.

If one begins to experiment here, one may notice some patterns.
You may be able to convince yourself that if n and m are coprime,
then v(nm) = v(n)v(m). After all, to form a divisor of nm, we can
multiply a divisor of n by a divisor of m. (Try to make this into a
rigorous argument.)

Definition 4.2. A function f : Z+ → C is multiplicative if f(1) = 1
and f(nm) = f(n)f(m) whenever n and m are coprime.

In other contexts, the term ‘multiplicative’ doesn’t require coprimal-
ity in the definition (e.g. when we discuss the Gaussian norm later in
the course). However, in the context of arithmetic functions, a function
which satisfies f(nm) = f(n)f(m) for all n and m is called completely
multiplicative to differentiate it from the definition above.

A completely multiplicative function is multiplicative.
Examples of completely multiplicative functions include f(n) = 1,

f(n) = n and f(n) = n2. Some multiplicative functions are not com-
pletely multiplicative, as we shall shortly see.

Theorem 4.3. If f(n) is multiplicative, so is F (n) =
∑

d|n f(d).
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Proof. Suppose that m and n are coprime. Then

F (mn) =
∑
d|mn

f(d)

=
∑
r|m,s|n

f(rs)

=
∑
r|m,s|n

f(r)f(s)

=
∑
r|m

f(r)
∑
s|n

f(s)

= F (m)F (n).

�

Note that we used coprimality in the step which introduces r and s
above.

Corollary 4.4. The functions v(n) and σ(n) are multiplicative.

Proof. This follows from the multiplicativity of f(n) = n and f(n) = 1,
since

v(n) =
∑
d|n

1, σ(n) =
∑
d|n

d.

�

The functions v(n) and σ(n) are not completely multiplicative, how-
ever. For example,

v(2) = 2 but v(4) = 3,

and
σ(2) = 3 but σ(4) = 7.

As a corollary to the multiplicativity of v and σ, we obtain formulae
in terms of the prime factorisation of n. Once we know a function
is multiplicative, then to obtain such a formula only requires that we
understand its values on prime powers.

Let n = pα. Then the positive divisors of n are 1, p, p2, . . . , pα.
Therefore

v(n) = α + 1, σ(n) = 1 + · · ·+ pα =
pα+1 − 1

p− 1
.

Now suppose that n = pα1
1 p

α2
2 · · · pα`

` . Then

v(n) =
∏̀
i=1

(αi + 1), σ(n) =
∏̀
i=1

(
pα`+1
` − 1

p` − 1

)
.
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In Theorem 4.3 above, we obtain F (n) from f(n). Can we go back-
ward, i.e. can we obtain f(n) from knowledge of F (n)? This will be
answered below.

Definition 4.5. The Dirichlet product of f, g : Z+ → C is

f ◦ g : Z+ → C

given by

(f ◦ g)(n) =
∑

d1d2=n
di∈Z+

f(d1)g(d2) =
∑
d|n

f(d)g
(n
d

)
.

I was careful to specify that the sum is over positive integers di, but
I will not be careful henceforth; it is always the case in such sums.

Proposition 4.6. The Dirichlet product is commutative and associa-
tive.

Proof. Commutativity is clear from the definition. It is associative
since

f ◦ (g ◦ h) =
∑

d1d2d3=n

f(d1)g(d2)h(d3) = (f ◦ g) ◦ h.

�

Definition 4.7. Define functions 1, I : Z+ → C by

1(n) =

{
1 n = 1
0 n > 1

,

I(n) = 1.

Proposition 4.8. For any f : Z+ → C,

(1) 1 ◦ f = f ◦ 1 = f ,
(2) I ◦ f = f ◦ I =

∑
d|n f(d).

At this point we have seen that the Dirichlet product is commutative
and associative, and has an identity, 1. What about inverses? It turns
out that inverses exist for many but not all functions f : Z+ → C. In
the next proposition, we discover the inverse of I.

Definition 4.9. The Möbius function µ : Z+ → {−1, 0, 1} is defined
by

µ(n) =

 1 n = 1
0 b2 | n, for b > 1
(−1)` n = p1 · · · p`, for pi prime.

The Möbius function is easily verified to be multiplicative.
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Proposition 4.10. I ◦ µ = µ ◦ I = 1.

Proof. We have µ ◦ I(1) = µ(1)I(1) = 1. Now let n > 1 and write
n = pa11 · · · pa`` for pi prime and ` ≥ 1. Then,

µ ◦ I(n) =
∑
d|n

µ(d)

=
∑

(e1,...,e`)
ei∈{0,1}

µ(pe11 · · · pe`` ).

But there is a bijection between those tuples (e1, . . . , e`) which have
e1 + · · · + e` ≡ 0 mod 2 (equivalently, µ(

∏
peii ) = 1) and those which

have e1 + · · · + e` ≡ 1 mod 2 (equivalently, µ(
∏
peii ) = −1). The

bijection is given by changing the last digit e` from 1 to 0 or vice versa.
This bijection shows that the sum above vanishes. Hence µ ◦ I(n) = 0
for n > 1. �

Theorem 4.11 (Möbius Inversion Theorem). Let F (n) =
∑

d|n f(d).
Then

f(n) =
∑
d|n

µ(d)F
(n
d

)
.

In other words, if F = f ◦ I, then f = F ◦ µ.

Proof. F ◦ µ = (f ◦ I) ◦ µ = f ◦ (I ◦ µ) = f ◦ 1 = f . �

Earlier, we have a theorem (Theorem 4.3) that whenever f is mul-
tiplicative, then f ◦ I is multiplicative. Actually, an almost identical
proof shows that

Theorem 4.12. If f, g : Z+ → C are multiplicative functions, then
f ◦ g is multiplicative.

Proof. Exercise. �

Definition 4.13. The Euler phi function, φ : Z+ → C, is given by

φ(n) = the number of integers x ∈ [1, n] which are relatively prime to n.

Proposition 4.14. ∑
d|n

φ(d) = n.

Proof. Consider the n rational numbers

1

n

2

n

3

n
· · · n− 1

n

n

n
in lowest terms. Let d | n. Then k/d appears in this list as lowest
terms for exactly those k which are relatively prime to d. That is, we
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see denominator d exactly φ(d) times in the list. This holds for each
d | n, and as d ranges through divisors of n, each fraction is accounted
for once. Therefore,

n =
∑
d|n

φ(d).

�

Proposition 4.15. φ(n) is multiplicative.

Proof. From the last proposition, φ ◦ I = g, where g : Z+ → C is the
function g(n) = n. By Möbius inversion, φ = g ◦ µ. Since g and µ are
multiplicative, φ must be multiplicative. �

The proof actually shows that whenever f ◦ I is multiplicative, f
must be.

Now we may obtain a formula for the Euler φ function. For a prime
p, φ(p) = p − 1. For a prime power, the only integers below pα which
are not coprime to pα are the powers of p. Hence φ(pα) = p−1

p
pα =

pα−1(p− 1). Then, by multiplicativity, for n = pa11 · · · pa`` ,

φ(n) = n
∏̀
i=1

(
1− 1

pi

)
.

5. The zeta function

Consider the series

ζ(s) =
∞∑
n=1

1

ns
.

For s > 1, this series converges (by the p-test). However, in the limit
s→ 1+, it diverges.

The series is called the Riemann zeta function. By unique factori-
sation, each n is expressed uniquely as a product of primes, and as n
ranges through the integers, all possible products appear. Therefore,

∞∑
n=1

1

ns
=
∏

p prime

(
1 +

1

ps
+

1

p2s
+ · · ·

)
.

This is the analytic version of the statement of unique prime factorisa-
tion in the integers! Summing the convergent geometric series on the
right gives the Euler product formula:

∞∑
n=1

1

ns
=

∏
p prime

(
1− 1

ps

)−1

.
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If there were only finitely many primes, then the product on the right
would be a finite product, which would imply the zeta function con-
verges for all s. Since this is not true, this serves as a proof that there
are infinitely many primes.

Series like the zeta function, i.e. of the form
∑∞

i=1
an
ns for some se-

quence an, are called Dirichlet series.
Dirichlet series serve as generating functions for arithmetic functions.

Generating functions are used in combinatorics to obtain identities be-
tween counting functions of various sorts (there’s an example on your
homework; see also the introduction to Newman’s book Analytic Num-
ber Theory). Similarly, functions like the Riemann zeta function can
be used to obtain identities between arithmetic functions. The Euler
product identity is the analytic form of the statement of unique fac-
torisation. In analytic number theory, one extends the definition of
ζ(s) to complex s and studies its properties in order to discover facts
about primes (most noteably, the Prime Number Theorem describing
the growth of primes).

We will have occasion to use the following fact in the near future:

(1)
1

ζ(s)
=
∞∑
n=1

µ(n)

ns
.

We’ll see momentarily that this is a special case of the Möbius in-
version formula interpreted as a statement about Dirichlet series. In
fact, the Dirichlet product structure on arithmetic functions is simpler
to understand in the language of Dirichlet series.

Theorem 5.1. Suppose that g = f1 ◦ f2. Let G(s), F1(s) and F2(s) be
the Dirichlet series associated to g, f1 and f2 respectively, i.e.

G(s) =
∞∑
n=1

g(n)

ns
, F1(s) =

∞∑
n=1

f1(n)

ns
, F2(s) =

∞∑
n=1

f2(n)

ns
.

Then, G(s) = F1(s)F2(s).
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Proof.

F1(s)F2(s) =
∞∑
m=1

f1(m)

ms

∞∑
k=1

f2(k)

ks

=
∞∑
n=1

1

ns

∑
m|n

f1(m)f2

( n
m

)
=
∞∑
n=1

g(n)

ns

= G(s).

�

From this, one can see that multiplication is associative and commu-
tative, and that the function 1 is the identity. One can also see that
inverses are more complicated: one needs the quotient of two Dirichlet
series to come in the form of a Dirichlet series.

In particular, one obtains (1) by taking g = 1, and f1 = I. Then
G(s) = 1 and F1(s) = ζ(s). Then, F2(s) = 1/ζ(s), while f2 = µ.

6. The Basel Problem

What is

ζ(2) =
∞∑
n=1

1

n2
?

Converges slowly; before computers, only a couple of decimal places
could be computed. This was part of the inspiration for Riemann to
define ζ(s).

Euler gave an argument (1735) whose validity needed to wait until
a century later when analysis was rigorized (is that a word?). Here’s
the ”argument” which is not a proof.

It depends on the expansion of sin(x) a la Calculus:

sin(x) = x− x3

3!
+
x5

5!
− · · ·

But Euler also expanded it as a product, as if it were a polynomial:

sin(x) =
∞∏

n=−∞

(
1− x

πn

)
= x

(
1− x2

π2

)(
1− x2

4π2

)(
1− x2

9π2

)
· · ·

He thought this was reasonable, because the zeroes of sin(πx) are all
the integers; so each side vanishes at the right places. But it’s pretty
suspicious, really: how do we know an infinite product converges? How
do we know the constant is right? But let’s run with it.
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Expanding the product then, into a series in powers of x, we obtain

sin(x) = x(1)

+ x3

(
− 1

π2
− 1

4π2
− 1

9π2
− · · ·

)
+ πx5

(
1

π2 · 4π2
+

1

π2 · 9π2
+

1

4π2 · 9π2
+ · · ·

)
+ · · ·

Then we compare coefficients. The coefficient of x3 tells us that

− 1

3!
= −

∞∑
n=1

1

n2π2
.

or, in other words
∞∑
n=1

1

n2
=
π2

6
.

The justification needed to make this into a proof (that we can treat
sin(x) as if it were a polynomial and factor it by its zeroes) is the
Weierstrass Factorization Theorem.

A closed form for ζ(3) is not known; it was only proven to be irra-
tional in 1979 by Apery.

7. Counting Squarefree Integers, using Möbius inversion

First, we need to show a different inversion formula, similar to the
regular Möbius inversion. It is a consequence of regular Möbius inver-
sion, i.e. the fact that µ ◦ I = 1.

Theorem 7.1. Let f be defined for all positive real numbers. For
positive real x, define

F (x) =

bxc∑
n=1

f
(x
n

)
.

Then

f(x) =

bxc∑
n=1

µ(n)F
(x
n

)
.
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Proof.

bxc∑
n=1

µ(n)F
(x
n

)

=

bxc∑
n=1

µ(n)

b xnc∑
m=1

f
( x

mn

)

=

bxc∑
n=1

b xnc∑
m=1

µ(n)f
( x

mn

)
=

bxc∑
k=1

∑
n|k

µ(n)f
(x
k

)

=

bxc∑
k=1

f
(x
k

)∑
n|k

µ(n)

=

bxc∑
k=1

f
(x
k

)
(µ ◦ I)(k)

=

bxc∑
k=1

f
(x
k

)
1(k)

= f(x)

�

This allows us to count the squarefree numbers. Define

Q(x) = #{1 ≤ n ≤ x : n is squarefree}.

Theorem 7.2.

Q(x) =
6x

π2
+O(

√
x).

Proof. Let y be a positive integer. Define sets Si, i = 1, 2, . . . by

Si = {n ≤ y2 : the largest square factor of n is i2}.

Then

#Si = Q

(
y2

i2

)
.
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In particular, if i > y, then Si is empty. Since each positive integer
≤ y2 belongs to exactly one set, we have

y2 =
∑
i≤y

Q

(
y2

i2

)
.

Applying Theorem 7.1,

Q(y2) =
∑
i≤y

µ(i)

⌊
y2

i2

⌋
=
∑
i≤y

µ(i)

(
y2

i2
+O(1)

)
Because

∑
i≤y µ(i) ≤ y, we have

Q(y2) = y2
∑
i≤y

µ(i)

i2
+O(y)

= y2

∞∑
i=1

µ(i)

i2
+O

(
y2
∑
i>y

1

i2

)
+O(y)

Because
∑

i>y
1
i2
≈
∫∞
y

di
i2

= 1
y
, we have

Q(y2) = y2

∞∑
i=1

µ(i)

i2
+O(y)

Below, we will see that
∑∞

i=1
µ(i)
is

= 1
ζ(s)

. Also, ζ(2) =
∑∞

i=1
1
i2

= π2

6
.

Hence

Q(y2) =
y2

ζ(2)
+O(y)

=
6y2

π2
+O(y)

We obtain the theorem by replacing y2 by x.
�

8. The growth of π(x)

Counting the primes is one of the central tasks of analytic number
theory. A good first result is the following, which gives a hint as to the
importance of the zeta function.

Theorem 8.1. The sum ∑
p prime

1

p
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diverges.

Proof. Let us ‘approximate’ ζ(1), which diverges, by taking only the
primes of size at most N :

ζN(1) =
∏
p≤N

(
1− 1

p

)−1

.

(All products over p are products over prime p in this proof.) Then
ζN(1)→∞ as N →∞. Let us compute

log ζN(1) = −
∑
p≤N

log

(
1− 1

p

)

=
∑
p≤N

∞∑
m=1

1

mpm

=
∑
p≤N

1

p
+
∑
p≤N

∞∑
m=2

1

mpm

We can bound the second sum:
∞∑
m=2

1

mpm
<

∞∑
m=2

1

pm
=

1

p2

(
1

1− 1
p

)
≤ 2

p2
.

Therefore,

log ζN(1) ≤
∑
p≤N

1

p
+ 2

∑
p≤N

1

p2
.

The left hand side diverges as N → ∞, but the right-most sum con-
verges (since

∑∞
n=1

1
n2 is finite, for example). This implies that

∑
p≤N

1
p

diverges as N →∞. �

This tells us that, for example, the primes are more numerous than
the squares, since

∑∞
n=1

1
n2 converges.

9. The Sieve of Eratosthenes

Write out a list of primes. Cross off all even numbers save 2 (”sieve
by 2”). Cross off all numbers divisible by 3 save 3 itself (”sieve by 3”).
Cross off all numbers divisible by 5 save 5 itself (”sieve by 5”). At each
stage, there is some first number in the list which is neither crossed off
nor saved; this is the next prime. It should be saved, and its multiples
crossed off. Should we continue this forever, we will have sieved by
each prime, and a list of the primes and only the primes shall remain.
This is the Sieve of Eratosthenes.
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This gives us a chance to return to probabilistic heuristics. For
example, sieving by 2 leaves about 1/2 the integers. Sieving by 3
leaves about 1/3 of those remaining, etc. So we expect after sieving by
all primes up to

√
x (which should suffice for eliminating non-primes

below bound x), that we have

π(x) ≈ x
∏
p≤
√
x

(
1− 1

p

)
.

(here I will use p to denote primes instead of specifying that the sum
is over primes every time).

It turns out, however, that this is a good but not great estimate. The
problem is that it assumes that, probabilistically speaking, whether a
number is divisible by p1 is independent of whether it is divisible by
p2, i.e. after we’ve removed multiples of p1, the multiples of p2 are still
proportion 1/p2 of what remains. But this is not true once primes are
big (relative to x)! After all, you can only fit so many big primes into
the factorization of one number. It turns outwe get more like 8/9ths
of the estimate above, in reality.

10. The Prime Number Theorem

Grandly named because it is regarded as probably the most impor-
tant result in number theory.

Theorem 10.1. We have

π(x) ∼ x

log x
∼ Li(x)

These estimates are not as mysterious as they seem. Starting from
Gauss’ 1792 observation that the probability of a number of size ap-
proximately x of being prime seems to be 1/ log x, one could roughly
estimate that proportion 1/ log x of numbers below x are prime. Better
yet, one could take into account that the proportion is changing as the
numbers grow, to guess

x∑
n=2

1

log n
≈
∫ x

2

dt

log t
,

which is called Li(x). For this reason, x
log x

is actually an underestimate,

and Li(x) is a much better guess. However, the ratio of both guesses
is 1 in the limit.

The estimate was conjectured by Gauss in 1792 (Legendre was also
making conjectures in this general direction).
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If Li(x) really is a good guess, then we should concentrate on the
error term of this guess. In 1848-50, Chebyshev acheived some partial

results (he showed that if the limit limx→∞
π(x) log(x)

x
exists, it must be

1). In 1859, Riemann studied ζ(s) in a very famous paper. Riemann
extended ζ(s) moromorphically to the entire complex plane (it has
exactly one pole, at s = 1) by analytic continuation. We find that ζ(s)
has so-called ‘trivial’ zeroes at negative even integers.

But the full PNT was proven for the first time in 1896 independently
by Hadamard and de la Vallée Poussin. Their method was essentially
analytic. The key to the proof is to show that all other zeroes lie in
the critical strip 0 < <(s) < 1. The tricky part is showing that there
are no zeroes having <(s) = 1.

The Hadamard-de la Vallé Poussin proof gives an error estimate, in
fact:

Theorem 10.2. There exist positive constants C and a such that

|π(x)− Li(x)| ≤ Cxe−a
√

log x.

However, it is not a great error estimate.
Further progress on the prime number theorem consists of improving

the error bound. To do so, one proves larger and larger zero-free regions
in the critical strip. What do we hope the final outcome will be?

Well, if the primes are really ”random,” then we can use the following
probabilistic argument to guess at the error term.

Suppose that one writes a sequence of zeroes and ones, the nth one
indicating whether n is prime (1) or not (0). Model this by a random
sequence subject to the single constraint that the probability of the
n-th digit being a 1 is 1/ log n. Assume each digit is independent (an
infinite sequence of independent random variables, in the language of
probability). Then, to guess what happens with the sequence from the
primes, we ask instead, what is true of probability 1 for this collection
of random sequences? (There are a few more details missing here.)
This is called the Gauss-Cramér model. It predicts that

π(x) = Li(x) +O(
√
x log x).

And in fact, if one could prove the Riemann Hypothesis, that all
nontrivial zeroes lie on the line <(s) = 1/2, then the error term would
become

Conjecture 10.3. For x ≥ 3,

|π(x)− Li(x)| ≤ √x log(x).
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In 1949, Selberg and Erdös provided an elementary (no analysis) but
very intricate proof of the PNT.

Questions about the growth of primes are equivalent to questions
about the growth of the sum of the Möbius function.

Theorem 10.4. The following are equivalent:

(1) The Riemann Hypothesis
(2) For x ≥ 3,

|π(x)− Li(x)| ≤ √x log(x).

(3) For all ε > 0, there exists Cε such that∣∣∣∣∣
N∑
n=1

µ(n)

∣∣∣∣∣ ≤ CεN
1/2+ε

The PNT is equivalent to the following theorem.

Theorem 10.5.

lim
N→∞

∑N
n=1 µ(n)

N
= 0

A näıve approach to the question of the size of
∑N

n=1 µ(n), called
the Mertens function, is to assume the Möbius function is essentialy
randomly ±1 on the squarefree n. A random walk of N steps leaves
you at an expected distance of

√
N from where you started. So it seems

intuitive, perhaps, but it is not easy to prove.

11. Primes and Zeroes of the zeta function

We’d like to see how the zeroes of the zeta function actually relate
to the primes. This is just a bit of calculus.

The first step is to consider the Mangoldt function

Λ(n) =

{
log p n is a prime power
0 otherwise

Why this function? For one thing, weighting the primes by log p makes
their sum ‘density 1’ everywhere. But more importantly, knowing the
growth of this will give the growth of the primes. It turns out that
Gauss’ estimate is equivalent to estimating∑

n≤x

Λ(n) ∼ x.
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Here’s why:

(log x)π(x) =
∑
p≤x

log x

=
∑
p≤x

log p

(
log x

log p

)

=
∑
p≤x

log p

⌊
log x

log p

⌋
+O

(∑
p≤x

log p

)

=
∑
p≤x

log p
∑

m:pm≤x

1 +O

(∑
p≤x

log p

)

=
∑
n≤x

Λ(n) +O

(∑
p≤x

log p

)
.

Of course, we really want to ignore the big-O term, which means we
expect

∑
n≤x

Λ(n) ∼ x.

In fact, if this is true, then

lim
x→∞

∑
p≤x log p

x
≤ 1.

So we discover that

(log x)π(x) ∼ x

which is the statement of the Prime Number Theorem. For this reason,
we can estimate this Mangoldt sum instead of π(x), and perhaps it’s
simpler (since the estimate is just x, not Li(x)). The other reason is
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that it relates nicely to the zeta function, using Euler’s product formula:

−ζ
′(s)

ζ(s)
= − d

ds
log ζ(s)

= − d

ds
log

∏
p prime

(
1− p−s

)−1

= − d

ds

∑
p prime

− log
(
1− p−s

)
=

∑
p prime

d

ds
log
(
1− p−s

)
=

∑
p prime

p−s log p

1− p−s

=
∑

p prime

(
p−s log p

)(
1 +

1

ps
+

1

p2s
+ · · ·

)

=
∑

p prime

∞∑
n=1

log p

pns

=
∞∑
n=1

Λ(n)

ns

(Here we follow Andrew Granville’s article in the Princeton Com-
panion to Mathematics.) So we actually want to take the denominator
out and cut off this function by requiring pm = n ≤ x. We can use a
step function to do this. Define

f(y) =

 0 0 < y < 1
1/2 y = 1
1 y > 1

Perron’s formula in analysis gives f(y) as a path integral in the complex
plane (along a vertical line):

f(y) =
1

2πi

∫
s:Re(s)=c

ys

s
ds.
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Using y = x/pm (assume x is not a prime power), and taking c large
enough so that everything converges absolutely,∑

n≤x

Λ(n) =
∑
p,m≥1

(log p)f

(
x

pm

)
=

1

2πi

∑
p,m≥1

log p

∫
s:Re(s)=c

(
x

pm

)s
ds

s

=
1

2πi

∫
s:Re(s)=c

(∑
p,m≥1

log p

pms

)
xs
ds

s

=
1

2πi

∫
s:Re(s)=c

(∑
n≥1

Λ(n)

ns

)
xs
ds

s

= − 1

2πi

∫
s:Re(s)=c

ζ ′(s)

ζ(s)

xs

s
ds.

Now this should look familiar if you’ve taken complex analysis. We
won’t assume complex analysis, except for a few basic facts. The main
facts here are that for an analytic function f (except at finitely many
points),

(1) The poles of f ′(z)/f(z) have order 1 and represent the zeroes
and poles of f ; each residue is the order of that zero or pole
(pole = negative residue).

(2) Cauchy’s residue theorem says that for an appropriate contour
C

1

2πi

∫
C

f(z)dz =
∑

z:poles and zeroes inside C

Res(f, z)

So, applying this to ζ (analytically continued), which has a unique pole
at 1, and whose zeroes are all simple,∑

n≥1

Λ(n) = x−
∑
ζ(ρ)=0

xρ

ρ
− ζ ′(0)

ζ(0)

The details are left for those who know some complex analysis. The
point is that we have an explicit formula giving the error term in our
estimate for the Mangoldt sum, which is governed by the zeroes of the
zeta function. Knowing these zeroes, then, will let us pin down the
error term and estimate the growth of π(x). That story will have to
wait for a class in analytic number theory.
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12. Number Rings and Prime Factorization

In Z, everything factors uniquely as a product of primes and one copy
of 1 or −1 (the two units). This property is so hugely fundamental to
everything that everyone assumed it held in other rings. Here are a
few of the other ”number rings” people wanted to study:

Definition 12.1. The Gaussian integers are the ring

Z[i] = {a+ bi : a, b ∈ Z} ⊂ C.

Addition is as for the complex numbers, i.e.

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i

(a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i

This confirms that the result of an addition or multiplication of two
Gaussian integers is again a Gaussian integer. The elements 0 and 1
are also Gaussian integers, so that Z[i] is a subring of C. Furthermore,
since C has no zero divisors, Z[i] is an integral domain.

We can visualise the Gaussian integers as the lattice of points in the
complex plane which have integer coordinates. Multiplication of two
complex numbers adds their angles and multiplies their lengths.

The Gaussian integers are equipped with a particularly useful func-
tion.

Definition 12.2. The norm on the Gaussian integers is the function
N : Z[i] → Z+ given by N(a + bi) = a2 + b2 (i.e. the square of the
length of the vector from the origin to a+ bi).

The norm satisfies the following useful properties:

(1) N(a+ bi) = 0 ⇐⇒ a+ bi = 0
(2) N is multiplicative, i.e. for α, β ∈ Z[i],

N(αβ) = N(α)N(β).

(3) N(a + bi) = (a + bi)(a − bi), or in other words, N(α) = αα,
i.e. the norm is the product of an element with its complex
conjugate.

The Gaussian integers of shortest length are those of length one:
1,−1, i,−i; all others have longer length. Since lengths multiply, this
shows that whenever uv = 1, it must be that u and v are chosen from
the list {1,−1, i,−i}.
Definition 12.3. The Eisenstein Integers are the ring Z[ω], where

ω = −1+
√
−3

2
, a primitive cube root of unity. In other words,

Z[ω] = {a+ bω : a, b ∈ Z} ⊂ C.
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The primitive cube root of unity ω has minimal polynomial x2+x+1.
To verify that this is a ring, let’s see that addition and multiplication

of Eisenstein integers give Eisenstein integers:

(a+ bω) + (c+ dω) = (a+ c) + (b+ d)ω.

Multiplication is a bit longer to compute:

(a+ bω)(c+ dω) = ac+ adω + bcω + bdω2

= ac+ adω + bcω + bd(−ω − 1)

= (ac− bd) + (ad+ bc− bd)ω

One more ring that’s of interest to us is Z
[

1+
√
−23

2

]
. It was a long

time before people understood the importance of this, but in fact,

1 +
√
−23

2
· 1−

√
−23

2
= 2 · 3.

That’s two different factorisations. If we saw something like this in the
integers, we would assume these weren’t both prime factorisations, i.e.,
that there were smaller things we could multiply to make 2 and 3.

This ring has a Norm function like the Gaussian integers. It is

N(a+ b
√
−23) = a2 + 23b2

The norm is clearly a non-negative number and zero only for the ele-
ment 0. You can check that this norm is multiplicative, just as for the
Gaussian integers. It also has the form

N

(
c+ d

1 +
√
−23

2

)
= (c+ d/2)2 + 23d2/4 = c2 + cd+ 6d2

so that it takes values in Z.
We have N(2) = 4 and N(3) = 9, whereas

N

(
1±
√
−23

2

)
= 6

So if there are some primes inside these factorisations (ways to break
the factorisation down further), they would involve elements of the ring
having norm 1, 2,or 3. It’s easy to check that there are no elements of
norm 2 or 3.

Let’s consider elements of norm 1. It turns out the only such are ±1.
Obviously, these aren’t good primes because any factorisation can be
written in many different ways in terms of ±1, by which I mean that

1 · x = 12 · x = 13 · x . . .
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So it would seem that there’s no good way to define prime numbers
for this ring. And that leaves us crying, because primes are the starting
point to understanding the multiplicative structure of Z.

Somehow, we really want there to be something with norm 2 or 3,
so we could further factorize our equation above. There aren’t any
elements of the ring with norm 2 or 3, so Dedekind invented the idea
of an ideal number – not a number in the ring, but something that
could play this role.

13. Rings and Ideals

All the rings in this course will be commutative.

Definition 13.1 (Reminder). An ideal is a subset I of a commutative
ring R such that

(1) I is an additive subgroup of R,
(2) rI ⊂ I for all r ∈ R,

In general, any ideal is of the form

I = (a1, a2, . . .) =
{

finite sums
∑

airi : ri ∈ R
}

for some ai ∈ R, called generators. (Frequently, the rings we work in
will have finitely generated ideals; but a general ring can have ideals
not finitely generated.)

We will write (a) for the ideal generated by a; an ideal with exactly
one generator is called principal. It is the case that for the ring Z,
every ideal has exactly one generator. In other words, the ideals of Z
are just

(1) = (−1) = Z,

(2) = (−2) = even integers,

(3) = (−3),

(4) = (−4),

· · · .
We’ll prove this later, but as an example, the (10, 15) = (5) since
5 = 15 − 10 (so that (5) ⊂ (10, 15)) and 15 and 10 are multiples of 5
(so that (10, 15) ⊂ (5)).

When we study Z, we talk about primes, about the units 1 and
−1, about divisibility, etc. We’d like to examine these ideas in other
rings, so we’ll set some terminology. All of our terminology has an
interpretation in terms of ideals.
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• b | a (b divides a) if a, b ∈ R, b 6= 0, a = bc for some c ∈ R.
Equivalently, (a) ⊂ (b).
• u is a unit if u | 1. Equivalently, (u) = R.
• a and b are associates if a = bu for some unit u ∈ R. Equiva-

lently, (a) = (b).
• p is irreducible if whenever a | p, it must be that a is a unit or

an associate of p. Equivalently, (p) ⊂ (a) =⇒ (a) = (p) or
(a) = R.
• p is prime if it is not a unit, nonzero, and whenever p | ab, then
p | a or p | b. Equivalently, ab ∈ (p) =⇒ a ∈ (p) or b ∈ (p).

Quick test of terminology:

(1) What are the associates of 3 in Z?
(2) What are the units in Q[x]?
(3) Is x2 + 1 irreducible in Q[x]?
(4) Is x2 + 1 prime in Q[x]?
(5) What are the associates of 1 in R, by another name?

In both Z and k[x], the notions of prime and irreducible coincide.
This isn’t true in every ring. If you are familiar with prime and maximal
ideals, compare that terminology with the terminology of prime and
irreducible elements.

Example 13.2. As we saw, the Gaussian integers of length one are
1,−1, i,−i; all others have longer length. Since lengths multiply, this
shows that whenever uv = 1, it must be that u and v are chosen from
the list {1,−1, i,−i}. Hence this is the full list of units in the Gaussian
integers.

If one draws the elements of an ideal such as (2 + i) in the Gaussian
integers, one finds a lattice. As another example, draw the elements
of the ideal (3 + 3i, 2) and discover that it is a principal ideal. Which
one?

14. Principal Ideal Domains

This follows Ireland and Rosen’s book ‘A classical introduction to
modern number theory’ and references are given as ‘IR’. That book
does what we’re about to do for the integers in the first chapter, as a
warmup. Then it does it in the generality here, doing it all again. The
proof is the same, just in different levels of generality, so take a look at
that if you’d like.

All the rings we study in this section will be integral domains. A
reminder: an integral domain is a ring with no zero divisors, i.e. no
nonzero elements x and y that have product xy = 0.
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Definition 14.1. R is a principal ideal domain (PID) if every ideal I
is principal, i.e. I = (a) for some a ∈ R.

Proposition 14.2. Let R be a PID. Then p is irreducible if and only
if p is a prime.

Proof. First, suppose that p is prime. Suppose that a | p. Let b = p/a |
p. Then ab = p, so either p | a, in which case a is an associate of p, or
p | b, in which case b is an associate of p and a is therefore a unit. So
p is irreducible.

Now suppose that p is irreducible. Suppose that p | ab, i.e. ab ∈ (p).
Then, since (p) ⊂ (a, p), one of two things happens (by the irreducibil-
ity property; note that to use this, we need to know (a, p) is principal):

(1) (a, p) = (p), in which case p | a; or
(2) (a, p) = R, in which case (b) = (ab, pb), which is a subset of (p)

since ab, pb ∈ (p). But then (b) ⊂ (p), i.e. p | b.
Therefore p is prime. �

Now we can state our goal, which is to show unique prime factorisa-
tion in a PID (i.e. a PID is a unique factorisation domain or UFD).

Theorem 14.3 (PID =⇒ UFD; IR Theorem 3, p. 12). Let R be
a PID. Let S be a set of prime such that every prime has a unique
associate in S. Then any a ∈ R, a 6= 0 can be written uniquely in the
form

a = u
∏
p∈S

pe(p)

where u is a unit and e(p) ∈ Z≥0.

A ring having the property described in this theorem is called a
unique factorization domain, abbreviated UFD.

The proof requires a sequence of lemmas.

Lemma 14.4 (Ascending Chain Lemma). Let R be a PID. Let (a1) ⊂
(a2) ⊂ (a3) ⊂ · · · (called an ascending chain of ideals). Then there
exists a k such that (ak) = (ak+`) for ` = 0, 1, 2, . . . (i.e. the chain
stabilizes).

Proof. Let

I =
∞⋃
i=1

(ai).

Then I is an ideal (exercise), so I = (a). But then a ∈ (ak) for some
k, which implies that I = (a) ⊂ (ak). So we have stabilized:

(ak) = (ak+1) = · · ·
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�

Lemma 14.5. Let R be a PID. Every nonzero nonunit a ∈ R is a
product of primes.

Proof. First step: show that some prime divides a.

• If a is prime, we are done.
• If not, then a = a1b1 where a1, b1 are nonzero nonunits.
• If a1 is prime, we are done.
• If not, then a1 = a2b2 where a2, b2 are nonzero nonunits.

• If a2 is prime, we are done.
• If not, then . . .

For as long as we continue this process, we generate an ascending chain
of ideals

(a) ( (a1) ( (a2) ( · · ·
The chain cannot go on forever (from the Ascending Chain Lemma),
so the process above must have terminated somewhere, and there is a
prime dividing a.

Second step: show that a is a product of primes.

• If a is prime, we are done.
• If not, then a = p1c1 where p1 is prime (by the First Step)
• If c1 is a unit, we are done.
• If not, then c1 = p2c2 where p2 is prime (by the First Step).

• If c2 is a unit, we are done.
• If not, then . . .

For as long as we continue this process, we generate an ascending chain
of ideals

(a) ( (c1) ( (c2) ( · · ·
The chain cannot go on forever (from the Ascending Chain Lemma),
so the process above must have terminated somewhere, and a has the
form

a = p1p2 · · · pkck, ck a unit.

Since p1, p2, . . . pkck are primes, a is a product of primes. �

Lemma 14.6. Let R be a PID. Let p be a prime, and let a 6= 0. Then
there exists an n such that pn | a but pn+1 - a.

Proof. For each m > 0, if there exist bm such that a = pmbm, then
pbm+1 = bm (they’re both equal to a/pm). So for as many m =
1, 2, 3, . . . as this continues to happen for, we get a chain

(b1) ( (b2) ( (b3) ( · · · ( (bm)
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This chain cannot go on forever, so there must be some smallest m for
which there was no bm with that property. �

Definition 14.7. The integer n in the previous lemma is uniquely
determined by p and a, so we can write

n = ordp(a)

Lemma 14.8. Let R be a PID. If a, b ∈ R, a, b 6= 0, then

ordp(ab) = ordp(a) + ordp(b).

Proof. Write
α = ordp(a), β = ordp(b).

Then
a = pαc, p - c, b = pβd, p - d.

Then ab = pα+βcd. But p - cd. �

Proof that PID =⇒ UFD. We already have the existence of the form
of a, namely,

(2) a = u
∏
p∈S

pe(p).

and need only establish uniqueness.
Let q be a prime in S. Apply ordq to (2), obtaining

ordq(a) = ordq(u) +
∑
p∈S

e(p) ordq(p).

But ordq(p) is 1 when q = p and 0 otherwise. And ordq(u) = 0. So,

ordq(a) = e(q).

This shows that e(q) is uniquely determined, so u = a/
∏

p∈S p
e(p) is

unique also. �

15. Euclidean domains

Definition 15.1. R is a Euclidean domain if there is a function

λ : R \ {0} → {0, 1, 2, . . .}
such that if a, b ∈ R, b 6= 0, then there exist q, r ∈ R such that

(1) a = bq + r
(2) r = 0 or λ(r) < λ(b).

Proposition 15.2 (Z is a Euclidean domain). For any a, b,∈ Z, there
exist q, r ∈ Z such that

(1) a = qb+ r
(2) r = 0 (i.e. b | a) or |r| < |b|.
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Proof. The set of non-negative a − qb has a least element. It is less
than b. �

Proposition 15.3 (k[x] is a Euclidean domain). For any a(x), b(x) ∈
k[x], there exist q(x), r(x) ∈ k[x] such that

(1) a(x) = q(x)b(x) + r(x)
(2) r(x) = 0 or deg r(x) < deg b(x)

Proof. Ireland and Rosen, p. 7 Lemma 2. Same idea as for q, but argue
least degree. �

Proposition 15.4 (Euclidean domain =⇒ PID). Every Euclidean
domain is a PID.

Proof. (See Ireland and Rosen Proposition 1.3.1). Let I be an ideal.
The set

{λ(b) : b ∈ I, b 6= 0}

has a least element, λ(a).
Claim: I = (a). This has two parts:

(1) (a) ⊂ I: This is clear.
(2) I ⊂ (a): For this, assume b ∈ I. Then there are some q, r ∈ R

such that b = qa + r and r = 0 or λ(r) < λ(a). Then r =
b− qa ∈ I, so λ(r) ≥ λ(a) (by the definition of a). This implies
r = 0 and hence b = qa ⊂ (a).

�

Proposition 15.5. Z[i] is a Euclidean domain.

Proof. Suppose we try to divide α = a+ bi by β = c+ di 6= 0. Then in
C, the result is

α/β = r + si

for some r, s ∈ R (actually, they are in Q).
A good guess for a ‘close’ Gaussian integer is δ = m+ni chosen such

that

|r −m| ≤ 1

2

|s− n| ≤ 1

2
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Set ρ = α − βδ (this is the ‘remainder’). If ρ = 0, we are done.
Otherwise, we can verify that

N(ρ) = N(α− βδ)

= N

(
β

(
α

β
− δ
))

= N(β)N

(
α

β
− δ
)

≤ 1

2
N(β)

< N(β)

In the first inequality, we are using the fact that α
β
− δ has coordinates

not exceeding 1/2, by our choice of δ.
In the last inequality, we use the fact that β 6= 0.
Thus we have verified that Z[i] has a Euclidean algorithm, where the

function λ in the definition of a Euclidean domain is, in this case, the
norm. �

Ireland and Rosen prove that Z[ω] is a Euclidean domain. For your
homework, find the units, etc.

16. The GCD and linear Diophantine equations

We will give two definitions of a greatest common divisor, and show
that they are equivalent in a PID.

Definition 16.1. An element d ∈ R is a greatest common divisor of
a, b ∈ R if

(1) d | a, d | b
(2) If d′ | a, d′ | b, then d′ | d.

Any two gcd’s of a, b ∈ R are associate.

Definition 16.2. In a PID, (a, b) = (d) for some d. This d is called a
greatest common divisor

Proposition 16.3. These two definitions are equivalent.

Proof. Suppose that (a, b) = (d). Then (a) ⊂ (d) and (b) ⊂ (d), i.e.
d | a and d | b. If here is some d′ such that d′ | a and d′ | b, then

(d′) ⊃ (a), (b) =⇒ (d′) ⊃ (a, b) = (d) =⇒ d′ | d.
Now suppose that d | a, d | b and whenever d′ | a, d′ | b, then d′ | d.
Then (a) ⊂ (d), (b) ⊂ (d), so (a, b) ⊂ (d). Now (a, b) = (d′) for some
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d′ since we are in a PID. As above, this implies that d′ | a and d′ | b,
so that d′ | d. Hence (d) ⊂ (d′) = (a, b). Therefore (a, b) = (d). �

In particular, if d = gcd(a, b), then (d) = (a, b), so there exist some
x0 and y0 so that

ax0 + by0 = d.

Also, for any x, y, we have

d | ax+ by.

This allows us to describe the solutions in x, y to any equation ax+by =
m. In particular, by the last remark, if d - m, then there are no
solutions.

Now suppose that d | m. In this case we may write m = kd, and
(x, y) = (kx0, ky0) is one solution. If (x′, y′) is another solution, then
it must be that

a(kx0 − x′) + b(ky0 − y′) = kd− kd = 0

Hence a(kx0 − x′) = −b(ky0 − y′), which implies that,

(kx0 − x′, ky0 − y′) = s

(−b
d
,
a

d

)
for some s ∈ R. In conclusion, then, the full set of solutions to ax+by =
m is {

k(x0, y0) + s

(−b
d
,
a

d

)
: s ∈ R

}
where d = gcd(a, b), k = m/d and (x0, y0) is any one solution. In other
words, we have parametrised the full set of solutions in terms of one
single solution. Therefore, in a practical situation, the task is to find a
single solution. The Euclidean algorithm serves this purpose.

17. Congruences Classes and Z/mZ

By a congruence class modulo m, we mean the following set:

a = {n ∈ Z : n ≡ a (mod m)}
= {a+ km : k ∈ Z}.

In other words, the collection of all integers with a given remainder
when divided by m.

Then Z/mZ is the ring of congruence classes modulo m. It has
cardinality m, since, for example, a complete set of representatives
(one representative for each class) is 0, 1, . . . ,m− 1.

If a = b, we write
a ≡ b (mod m).
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There is a map
Z→ Z/mZ, a 7→ a.

This map is a ring homomorphism, and checking this is a good exercise.
We will henceforth generally omit the line and write a for a.

18. Solving Linear Congruences

Suppose we’d like to solve the congruence ax ≡ b (mod m) in the
variable x, i.e. find all congruence classes x which solve the equation.
This is equivalent to finding x and y in the integers such that

ax+ ym = b,

which we’ve already discussed a couple of sections ago. There are no
solutions if gcd(a,m) - b. Otherwise,

(x,m) = k(x0, y0) +
s

d
(−m, a)

for s ∈ Z, where d = gcd(a,m), k = b/d, and ax0 + y0m = b.
How many solutions are there in Z/mZ? The possible x are

x ≡ bx0

d
− sm

d
(mod m)

as s ranges through the integers. As s ranges, the value sm
d

hits d
different values in Z/mZ. Therefore there are exactly d solutions, when
d = gcd(a,m) | b.
Corollary 18.1. If gcd(a,m) = 1, then ax ≡ b (mod m) has one
solution. In particular, ax ≡ 1 (mod m) has one solution, so a is
invertible.

The corollary implies that Z/mZ has φ(m) units (i.e. the units are
exactly those 1 ≤ a ≤ m such that gcd(a,m) = 1).

If m = p is prime, then Z/pZ has p− 1 units, i.e. everything except
0 is a unit. Therefore Z/pZ is a field.

Otherwise, if m is not a prime, then m = nk for some n and k
nonzero, so nk ≡ 0 (mod m), whereas n 6≡ 0 (mod m) and k 6≡ 0
(mod m). In other words, Z/mZ has zero divisors!

We will use the notation

(Z/mZ)∗ = U(Z/mZ)

for the group of units of Z/mZ.

Corollary 18.2 (Euler’s Theorem). If gcd(a,m) = 1, then

aφ(m) ≡ 1 (mod m).

Proof. The units of Z/mZ form a group of order φ(m). �
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An immediate corollary of Euler’s Theorem is the following.

Corollary 18.3 (Fermat’s Little Theorem). If p is prime, and p - a,
then

ap−1 ≡ 1 (mod p).

19. Chinese Remainder Theorem

This theorem dates as far back as Sun Tsu in the 1st century, ac-
cording to some sources, and may be older still. Here’s the form you
may have seen it in:

Theorem 19.1 (Chinese Remainder Theorem). If bi ∈ Z and mi ∈
Z>0 for i = 1, . . . , t, then the system of equations

x ≡ b1 (mod m1)

x ≡ b2 (mod m2)

...

x ≡ bt (mod mt)

always has a solution and any two solutions are congruenct modulo the
product m1m2 · · ·mt.

This could be restated as

Theorem 19.2. Let m1, . . . ,mt be coprime integers. Then we have a
ring isomorphism

Z/m1 · · ·mtZ ∼= Z/m1Z× · · · × Z/mtZ.

It’s not much harder to state this for general commutative rings with
identity.

Theorem 19.3 (Chinese Remainder Theorem for General Rings). Let
I1, I2, . . . , Ik be ideals of a ring R. The following map is a ring homo-
morphism:

φ : R→ R/I1 ×R/I2 × · · · ×R/Ik
φ : r 7→ (r + I1, r + I2, . . . , r + Ik).

and the kernel of φ is ∩ki=1Ii. If the ideals are all comaximal (i.e.
Ii + Ij = R for all i, j)2, then the map is surjective and the kernel is

also equal to the product
∏k

i=1 Ii.

2This is the generalization of coprimality
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In particular, if they’re all coprime,

R/
∏

Ii ∼
∏
i

R/Ii

Proof. (Standard; following, for example, Dummit and Foote, Section
7.6)

We will assume k = 2; the proof for larger k is the same (or you can
do it by induction from the proof with k = 2). The proof for more
general rings is also very similar.

First, φ is a ring homomorphism. This is because it is a homomor-
phism in each factor.

Second, the kernel of this map is

{r : r ∈ I1, r ∈ I2} = I1 ∩ I2.

If I1 + I2 = R, then there are r1 ∈ I1, r2 ∈ I2 with r1 + r2 = 1
Therefore any r ∈ I1∩I2 satisfies r = rr1 +rr2 ∈ I1I2. So I1∩I2 ⊂ I1I2.
But the reverse inclusion is always true. So the kernel in this case is
I1I2.

Third, the map is surjective. Let (x, y) ∈ R/I1 ×R/I2. Then

s := xr1 + yr2

= x(1− r2) + yr2

≡ x (mod I2)

and

s = xr1 + yr2

= xr1 + y(1− r1)

≡ y (mod I1)

So

s 7→ (x mod m1, y mod m2)

and we have shown surjectivity. �

In particular, we have a group isomorphism

(Z/m1 · · ·mtZ)∗ ∼= (Z/m1Z)∗ × · · · × (Z/mtZ)∗.

In particular (more particular?), their cardinalities are equal, so

φ(m1 · · ·mt) = φ(m1)φ(m2) · · ·φ(mt).

This constitutes another proof of the multiplicativity of φ.
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20. The p-adic numbers

The p-adic numbers are motivated by a grand analogy, beginning
with the observation that Z is a little like C[x], the ring of polynomials
with complex coefficients. For example, both of them are unique fac-
torization domains, so they have a list of primes. Here’s a sort of chart
of the analogy:

Z C[x]
Q C(x)

q ∈ Q has the form a
b
, a, b ∈ Z f(x) ∈ C(x) has the form p(x)

q(x)
,

for p(x), q(z) ∈ C[x]
Z is a UFD C[x] is a UFD
The primes of Z are 2, 3, 5, 7, . . . The primes of C[x] are

(x− α) for α ∈ C
We can write a number base p A rational function has a Taylor

expansion at x = α
m = a0 + a1p+ · · ·+ anp

n p(x) = a0 + a1(x− α) + a2(x− α)2+
· · ·+ an(x− α)n

We can ask to what power We can ask to what order
does p divide m? is α a zero of p(x)?

Rational functions f(x) ∈ C(x) also have a Taylor expansion:

f(x) =
∞∑
i=n

ai(x− α)i

for some n, possibly negative. This converges in some small positive
radius around α. This now begs the question: what about a rational
number? Does it have a p-expansion? Specifically, can we write it in
the form

a/b =
∞∑
i=n

aip
i

for some n, possibly negative? (Note that this is different than the
usual ‘decimal expansion’ of a rational, which may be infinite in the
direction of negative powers of p, but always finite in the direction of
positive powers of p. Here the series has a finite number of terms of
negative powers of p, and possibly infinitely many terms of positive
powers of p.)

Let’s do some examples, and see if we can make sense, at least for-
mally, of such an idea. Let’s let p = 2.

Then,

1 = 1 · 20 + 0 · 21 + 0 · 22 + · · ·
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So far so good. Also,

1/2 = 1 · 2−1 + 0 · 20 + 0 · 21 + · · ·
Another example:

3 = 1 · 20 + 1 · 21 + 0 · 22 + · · ·
And we’re still ok with

3/2 = 1 · 2−1 + 1 · 20 + 0 · 21 + · · ·
But here’s a trickier one: What about −1?
Well,

−1 =
1

1− 2
= 1 + 2 + 22 + 23 + 24 + · · ·

This doesn’t make a lot of sense in the reals, since this sequence di-
verges. But purely formally, this is ‘correct’ and consistent. For exam-
ple,

1 + (−1) = 1 + (1 + 2 + 22 + 23 + · · · )
= 2 + 2 + 22 + 23 + · · ·
= 22 + 22 + 23 + · · ·
= 23 + 23 + 24 + · · ·
= · · ·
= 0.

This is purely formal! (Although, in order to make this make sense,
we can define an appropriate metric under which these sorts of series
will converge.)

Let’s do a few more examples. What about 1/3? We could try

1/3 = 1/(1 + 2) = 1− 2 + 22 − 23 + 24 − 25 + · · ·
But it would be really nice to have coefficients of the powers of p which
lie strictly in the range 0 ≤ ai < p. To get ride of those negative
coefficients here is going to be a bit of a pain. Let’s try something a
bit different:

1/3 = 1 +
2

1− 22

= 1 + 2(1 + 22 + 24 + 26 + · · · )
= 1 + 2 + 23 + 25 + 27 + · · ·

Great! So it looks like we really can get a p-expansion for any rational
number! Now, guided again by the analogy, note that we have an
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injection

C(x) ↪→ C((x− α))

where the latter is the field of formal Laurent series, i.e. all things that
look like

∞∑
i=n

ai(x− α)i

for some n. If we define the collection of formal p-expansions, called
p-adics, as

Qp =

{
∞∑
i=n

aip
i
∣∣∣0 ≤ ai ≤ p− 1, n ∈ Z

}
then it turns out we get an injection

Q ↪→ Qp.

(We have not proven this yet, but keep reading...)

21. The projective limit definition of the p-adic integers.

Working with p-expansions, while natural from the motivational
viewpoint given above, is a bit of a pain in practice. There’s a much
better, if apparently more abstract, way to define the p-adics. To do so,
we will actually start by defining the p-adic integers, which are meant
to be the p-expansions consisting only of non-negative powers of p.

Suppose we consider such an expansion:

α =
∞∑
i=0

aip
i.

Let’s set some notation for the partial sums, which are integers:

Sn =
n−1∑
i=0

aip
i ∈ Z

Let’s consider the residue sn of sn modulo pn. That is,

sn ∈ Z/pnZ.
Then these partial sum residues sn have a special property with

respect to the following chain of ring homomorphisms:

Z/pZ
π1←− Z/p2Z

π2←− Z/p3Z
π3←− · · ·

The homomorphism πn is the map which considers a residue modulo
pn+1 to be a residue modulo pn, for example, if p = 3, then

π1(10 mod 9) = 1 mod 3.
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To wit3, the special property is that

πn(sn+1) = sn.

We will call this coherence. An example may clarify: if α = 1 + p2 +
2p3 + 3p4 + · · · , then

π4(1 + p2 + 2p3 + 3p4) = 1 + p2 + 2p3 (mod p4).

This motivates us to start afresh with the following definition, which
is an instance of a projective limit (also called an inverse limit).

Definition 21.1. Let us define

lim
n←−
Z/pnZ =

{
(xn)∞n=1 ∈

∞∏
n=1

Z/pnZ
∣∣∣πn(xn+1) = xn for n = 1, 2, . . .

}
.

That is, we are defining a subset of an infinite product of rings, a
subset which is characterised by the coherence property which the sn
satisfied. It is our hope that this subset is in fact a ring. But first, we
will show that, as a set, it is in bijection with the p-expansions having
only non-negative powers of p.

Proposition 21.2. We have a bijection{
∞∑
i=0

aip
i
∣∣∣0 ≤ ai ≤ p− 1

}
↔ lim

n←−
Z/pnZ.

Proof. Given a sum
∑∞

i=0 aip
i, we will map it to the element

(sn)∞n=1,

where the sn were defined at the beginning of this section. It is clear
that

πn(sn+1) = sn.

So that this element is indeed an element of lim
n←−
Z/pnZ.

To show this is a bijection (both surjective and injective), we should
start with an element (xn)∞n=1 of

∏∞
n=1 Z/p

nZ having the property that
πi(xi+1) = xi, and show that there is a unique series which has partial
sums

sn ≡ xn (mod pn).

To be able to do so, it suffices to know that any residue class a modulo
pn can be uniquely represented in the form

a ≡ a0 + a1p+ · · · an−1p
n−1 (mod pn),

3To woo?
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where 0 ≤ ai < p. For, in this case the coherence property implies that
if

xn ≡ a0 + a1p+ · · ·+ an−1p
n−1 (mod pn)

then

xn−1 = πn−1(xn) ≡ a0 + a1p+ · · ·+ an−2p
n−2 (mod pn−1),

i.e. the various expressions of the xn are all partial sums of the same
infinite series, and this series is unique. That is, we may define the
series uniquely as

∞∑
i=0

aip
i.

This leaves us with the task of showing that a residue class a modulo
pn has a unique expression in the form

a ≡ a0 + a1p+ · · · an−1p
n−1 (mod pn).

We do so by induction. The case of n = 1 is easy: any a has a unique
residue a0 modulo p which satisfies 0 ≤ ai ≤ p− 1. Now suppose it has
been proven for n− 1. Then, writing uniquely

a ≡ a0 + a1p+ a2p
2 + · · ·+ an−2p

n−2 (mod pn−1)

we find that

a ≡ a0 + a1p+ a2p
2 + · · ·+ an−2p

n−2 + gpn−1 (mod pn)

for some g (since, letting g range among integers, we obtain all possible
lifts of a mod pn−1 to a residue modulo pn). But in fact, each 0 ≤ g ≤
p − 1 gives a different residue class modulo pn, only one of which is
congruent to a. Hence g is determined uniquely in the range 0 ≤ g ≤
p− 1, which is what was required to prove. �

Proposition 21.3. lim n←− Z/p
nZ is a subring of

∏∞
n=1 Z/p

nZ

Proof. lim n←− Z/p
nZ inherits its ring operations from the product, i.e.

addition and multiplication are coordinatewise:

(xn)∞n=1 + (yn)∞n=1 = (xn + yn)∞n=1

(xn)∞n=1 × (yn)∞n=1 = (xnyn)∞n=1

Note that it does indeed contain the additive identity, which is

(0)∞n=1

and the multiplicative identity,

(1)∞n=1.

Since these have the property that πn(0) = 0 and πn(1) = 1. To see
that it is a subring, it suffices to check that it is closed under the ring
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operations. Since the πn are ring homomorphisms, this just entails a
brief check that the coherence property is preserved:

πn−1(xn + yn) = πn−1(xn) + πn−1(yn) = xn−1 + yn−1

πn−1(xnyn) = πn−1(xn)πn−1(yn) = xn−1yn−1

�

At this point, it is worth checking (as an exercise) that these op-
erations, applied to the series representation, are just addition and
multiplication of series. Adding and multiplying series is a bit of a
pain, because of all the carrying.

That will then justify writing

Zp = lim
n←−
Z/pnZ.

That is, we can use the notation Zp for the projective limit (it’s an
abuse of notation, as we already used it for series).

22. Back to the p-adic rationals

We originally wanted to consider the collection of all p-expansions,
possibly including finitely many negative powers of p. We denoted this
by Qp. We can extend the ring operations from Zp (thought of as p-
expansions) to Qp by writing every element of Qp in the form p−mg
where g ∈ Zp and m ≥ 0. If we have two elements

p−m1g1 and p−m2g2

then we can rewrite them in the form

p−Ng′1 and p−Ng′2

where N ≥ m1,m2 (I’m just taking common denominators here). Then
we can define addition

p−m1g1 + p−m2g2 = p−N(g′1 + g′2)

and multiplication

p−m1g1p
−m2g2 = p−m1−m2g1g2,

as extensions of the operations on Zp. If we define Qp this way, then
we obtain the following.

Proposition 22.1. Qp is a the field of fractions of Zp.
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Proof. We should check that the operations defined above make Qp
into a ring; this is straightforward. To see that it is a field, we need
all non-zero elements to be invertible. This is a bit more interesting,
and writing down inverses was given as a homework question. Finally,
since Zp injects into Qp, and all f ∈ Qp are of the form p−mg, m ≥ 0
and g ∈ Zp (i.e. quotients of elements of Zp), Qp is the field of fractions
of Zp. �

Proposition 22.2.

Z ↪→ Zp

Q ↪→ Qp

Proof. The first injection is given by

a 7→ (a mod p, a mod p2, a mod p3, . . .).

This is a ring homomorphism. Then, since Q is the field of fractions of
Z, it must inject into the field of fractions of Zp. �

23. Absolute Values

This perspective is well-developed in Gouvea’s book ”p-adic Num-
bers”; we will follow that for now.

Definition 23.1. An absolute value on a field F is a function

| · | : F → R≥0

satisfying

(1) |x| = 0 if and only if x = 0
(2) |xy| = |x||y| for all x, y ∈ F
(3) |x+ y| ≤ |x|+ |y| for all x, y ∈ F

In addition, it is non-archimedean if also

|x+ y| ≤ max{|x|, |y|} for all x, y ∈ F.
(Otherwise, archimedean.)

Being non-archimedean implies item (3); it is stronger than the trian-
gle inequality. On any field, you have the trivial absolute value which
is 0 at 0 and 1 elsewhere. The absolute value you’re used to is an
example.

There’s a ‘logarithmic’ version of this definition.

Definition 23.2. A valuation on a field F is a function

v : F → Z≥0 ∪ {∞}
such that



48 KATHERINE E. STANGE

(1) v(x) =∞ if and only if x = 0
(2) v(xy) = v(x) + v(y) for all x, y ∈ F
(3) v(x+ y) ≥ min{v(x), v(y)} for all x, y ∈ F

For us, the important example is the following. We used the kind
of dumb notation ordp(n) when proving unique factorisation (probably
because I was following Ireland and Rosen there), but let’s extend it
to Q and write that as vp(n) instead, and call it the p-adic valuation.
Any x ∈ Q is of the form x = pvp(x) a

b
where p - ab.

Then we get

Definition 23.3. The p-adic absolute value on Q is

|x|p =

{
p−vp(x) x 6= 0
0 x = 0

Proposition 23.4. This is a non-archimedean absolute value on Q.

Aside: you can have fun using the degree as a valuation on C(x)
An absolute value induces a metric, or a measure of distance between

two things.

Definition 23.5. A metric on a set X is a function

d : X ×X → R≥0

such that

(1) d(x, y) = 0 if and only if x = y for x, y ∈ X
(2) d(x, y) = d(y, x) for x, y ∈ X
(3) d(x, z) ≤ d(x, y) + d(y, z) for x, y, z ∈ X

If we have an absolute value on F , then d(x, y) = |x − y| gives a
metric on F . If the absolute value is non-archimedean, then we also
get the following property, called the ultrametric inequality :

d(x, y) ≤ max{d(x, z), d(z, y)}.
Our metric is then called an ultrametric.

Proposition 23.6. If x, y ∈ F and | · | is an ultrametric, then for
|x| 6= |y|,

|x+ y| = max{|x|, |y|}.
Another way to say this is that all triangles are isosceles. Let’s do

a p-adic example. In the 5-adics, look at a lengths of all the distances
between 1, 1/5, 2/15 and 7/15. Note that is does not make sense to
think of Q as a line anymore!

A notion of distance gives a topology. We won’t do an intro course
to toplogy here, but you will recognise it as we go if you have seen it.
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To understand the topology, or the metric, it is helpful to explore
the properties of open and closed balls:

B(a, r) = {x ∈ F : |a− x| < r}, B(a, r) = {x ∈ F : |a− x| ≤ r}.
For homework, verify some of the crazy properties:

(1) Every point contained in an (open or closed) ball is a centre of
that ball.

(2) Balls are both open and closed (except the empty ball).
(3) Two (both open or both closed) balls are either disjoint or one

is contained in the other.

Throw your euclidean intuition out the window, please.
On Q, we’ve seen the usual absolute value, the trivial absolute value

and the p-adic absolute values. Two absolute values are considered
equivalent if they generate the same topology, i.e. the same open sets.
Another equivalent definition is that for any x ∈ F , |x|1 < 1 if and only
if |x|2 < 1. It is a famous theorem of Ostrowski that up to equivalence,
this is the whole collection of absolute values on Q. All these absolute
values are related by the product formula:∏

p≤∞

|x|p = 1, for all x ∈ Q∗.

where | · |∞ is the archimedean, usual absolute value. We think of ∞
as the ‘archimedean prime’ or ‘prime at infinity.’

We won’t do it in this course, but it turns out that one obtains the
p-adics Qp as a completion of Q under the p-adic absolute value. Unfor-
tunately, unlike the case for C as the completion under the archimedean
absolute value, Qp isn’t algebraically closed. You have to close it, then
complete it again, and then it’s closed.

24. Solving non-linear congruences

Let f be a polynomial and consider the equation

(3) f(x) ≡ 0 (mod m)

Write m = pa11 · · · pa`` . Then, by the Chinese Remainder Theorem,
(3) is solvable if and only if f(x) ≡ 0 (mod paii ) is solvable for each
i = 1, . . . , `. To be more precise about using CRT, here’s the argument:

Suppose we have a bi which solves f(x) ≡ 0 (mod paii ) for each i.
Then, by the ring homomorphism of CRT, there exists some b such
that b ≡ bi (mod paii ) for all i. But also by the ring homomorphism of
CRT, f(b) ≡ 0 (mod m). The other direction is clear.

Therefore, it suffices to look for solutions modulo prime powers.
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Now we can reap the reward of learning about the p-adics. They
“package” information modulo all powers of p into one object. Here’s
an example of the power of the language:

Proposition 24.1. Let f ∈ Z[x], and let p be a prime. Then

f(x) ≡ 0 (mod pn)

is solvable for all n = 1, 2, . . . if and only if

f(x) = 0

is solvable in Zp.

Proof. In Zp, f(x) = 0 means that

(f(x) mod p, f(x) mod p2, . . .) = (0 mod p, 0 mod p2, . . .)

So if there’s a p-adic integer solution x, then in particular, it gives a
solution mod pi for each i = 1, 2, . . ., by looking at the appropriate
coordinate.

Conversely, suppose that f(xi) ≡ 0 (mod pi) for each i = 1, 2, . . ..
We may be lucky and find that the sequence

(xi)
∞
i=1

is already in lim n←− Z/p
nZ, i.e. it has the coherence property. Then this

would give the p-adic solution.
More likely than not, though, it is not coherent. So we have more

work to do. Viewing (xi) as a sequence in Z, it has infinitely many
terms which are congruent mod p (by the pigeonhole principle), say to
y1 modulo p. Then

f(y1) ≡ 0 (mod p).

(Why? Because f(x) ≡ 0 (mod pk) for some k, and some x ≡ y1

(mod p).)
These infinitely many terms form a subsequence. From among the

terms in that subsequence, by pigeonhole principle once again, there
are infinitely many which are congruent modulo p2, say to y2 modulo
p2. Then

f(y2) ≡ 0 (mod p2)

y2 ≡ y1 (mod p)

Now we have a subsequence of a subsequence. From among these
terms, find infinitely many congruent modulo p3, . . .
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Repeating this argument, we construct yi for i = 1, 2, 3, . . .. Then
we may define

(yi)
∞
i=1 ∈

∞∏
i=1

Z/pnZ.

By construction, (yi) ∈ lim n←− Z/p
nZ (i.e. we have guaranteed the

coherence property) and

f(yi) ≡ 0 (mod pi)

for all i = 1, 2, . . ., so that this is a p-adic zero of f . �

Using essentially the same proof, we obtain the following proposition.

Proposition 24.2. Let f ∈ Z[x1, . . . , xm], and let p be a prime. Then

f(x1, . . . , xm) ≡ 0 (mod pn)

is solvable for all n = 1, 2, . . . if and only if

f(x1, . . . , xm) = 0

is solvable in Zp.

We’ll refer to the following as Hensel’s Lemma, although it is just
one among many similar statements by that name (most more general
than this).

Proposition 24.3 (Hensel’s Lemma the First). Let f(x) ∈ Z[x]. Sup-
pose that b ∈ Z is such that

f(b) ≡ 0 (mod p), and

f ′(b) 6≡ 0 (mod p)

Then there exists an α ∈ Zp such that α ≡ b (mod p) and f(α) = 0.

Instead of proving this directly, we’ll prove a more detailed statement
(which we’ll also call Hensel’s Lemma), which implies this. This more
detailed version will be particularly useful for computation.

Proposition 24.4 (Hensel’s Lemma the Second). Let f(x) ∈ Z[x].
Then

(1) If f(b) ≡ 0 (mod pa) and f ′(b) 6≡ 0 (mod p), then there exists
b′ such that

f(b′) ≡ 0 (mod pa+1), and

b′ ≡ b (mod pa)

Furthermore, b′ = b+ tpa where

tf ′(b) ≡ −f(b)

pa
(mod p).
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(2) If f(b) ≡ 0 (mod p) and f ′(b) ≡ 0 (mod p), then either all
b′ ≡ b (mod pa), or none of them, satisfy

f(b) ≡ 0 (mod pa+1).

The proof is exactly Newton’s Method under the p-adic metric. To
illustrate the relationship, we’ll demonstrate Newton’s Method first.

Newton’s Method is a method to find a root of a polynomial f(x) ∈
Q[x] by starting with an approximation and refining it at each step.
One can prove that, after a suitable first guess, the method converges
to a root. Let b be our first guess. The key is the Taylor series expansion
of f(x) around b:

f(x) = f(b) + f ′(b)(x− b) +
f ′′(b)

2
(x− b)2 + · · ·

To improve our guess from b to b′ = b+ ε, we aim for f(b+ ε) = 0, i.e.

0 = f(b′) = f(b) + f ′(b)ε+ · · ·
Since the remaining terms are higher order, we can approximate by
choosing

(4) ε = − f(b)

f ′(b)
,

as long as f ′(b) 6= 0. In other words,

b′ = b− f(b)

f ′(b)
.

This doesn’t actually get us f(b′) = 0, but it does get us

f(b′) =
f ′′(b)

2
ε2 + · · ·

If b was fairly close to the root to begin with, and f ′(b) isn’t too close
to zero, then ε is small, which in turn means f(b′) is an even smaller
value (quadratically smaller in some sense), so b′ is very close to the
root. I leave further details to you. The details (of how much better
your approximate root gets) are actually tidier in the case of Hensel’s
Lemma.

Proof of Hensel’s Lemma the Second. Suppose we have a solution

f(x0) ≡ 0 (mod pa).

In the p-adic metric, this means

|f(x0)|p <
1

pa
.

In other words, we have a fairly good approximation to a root.
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For t ∈ Z,

(5) f(x0 + tpa) = f(x0) + tpaf ′(x0) + · · ·+
(

(tpa)n

n!

)
f (n)(x0),

where n is the degree of f . Here, tpa is the ε of Newton’s method. It
remains to choose a good t to make things work.

Proof of first part. A good t is one so that

f(x0 + tpa) ≡ 0 (mod pa+1),

or in other words, we have a better approximate root, i.e.

|f(x0 + tpa)|p <
1

pa+1
.

But since the higher order terms of the Taylor expansion are divisible
by pa+1, this desired congruance has a solution in t if and only if

tpaf ′(x0) ≡ −f(x0) (mod pa+1)

has a solution in t, just as in the Newton’s Method equation (4), which
in turn is true if and only if

tf ′(x0) ≡ −f(x0)

pa
(mod p)

has a solution in t. (We may rest assured that pa | f(x0) by assump-
tion.) This has a solution if and only if p - f ′(x0).

Further, if these various equivalent statements hold, then the solution
is unique, since f ′(x0) must be invertible modulo p.

Proof of second part. From (5), if p | f ′(x0), then

f(x0 + tpa) ≡ f(x0) (mod pa+1)

for all t. Applying this repeatedly, beginning with a = 1, we obtain
the result.

�

Proof of Hensel’s Lemma the First. To get an element α = (bn)∞n=1 of
Zp such that f(α) = 0, we must construct a sequence of bi ∈ Z such
that

f(bi) ≡ 0 (mod pi), and

bi ≡ bi−1 (mod pi−1)

To begin, choose b1 = b. By Proposition 24.4, there exists some
b2 ≡ b1 (mod p) such that f(b2) ≡ 0 (mod p2). Repeating, there exists
b3 ≡ b2 (mod p2) such that f(b3) ≡ 0 (mod p3), and so on and so forth
until we have all the bi. �



54 KATHERINE E. STANGE

Example 24.5. Let f(x) = x3−2x2+3x+9. Then f ′(x) = 3x2−2x+3.
Solutions modulo 3. Here we simply try each solution: 0 and 2

work.
Solutions modulo 9.
Can we lift x0 ≡ 0 (mod 3)?

0 | f(0) = 9, 3 | f ′(0) = 3.

Therefore 0, 3, 6 are all solutions modulo 9.
Can we lift x0 ≡ 3 (mod 3)?

9 - f(2) = 15, 3 - f ′(2) = 7

Therefore, there is a unique lift which works, and it is given by solving

7t ≡ −15

3
(mod 3)

In other words, t ≡ 1 (mod 3) so 2 + 1 · 3 ≡ 5 (mod 9) is the unique
lift.

The solutions modulo 9 are therefore: 0, 3, 5, 6.
Solutions modulo 27.
Can we lift x0 ≡ 0 (mod 9)?

27 - f(0) = 9, 3 | f ′(0) = 3.

Therefore there are no lifts which work.
Can we lift x0 ≡ 3 (mod 9)?

27 | f(3) = 27, 3 | f ′(3) = 6.

Therefore, there all the lifts work: 3, 12, 21 (mod 2)7.
Can we lift x0 ≡ 5 (mod 9)?

27 - f(5) = 99, 3 - f ′(5) = 58.

Therefore, there is a unique lift, given by solving

58t ≡ −99

9
(mod 3)

In other words, t ≡ 1 (mod 3) so 5 + 1 · 9 ≡ 14 (mod 27) is the unique
lift.

Can we lift x0 ≡ 6 (mod 9)?

27 - f(6) = 171, 3 | f ′(6) = 99.

Therefore there are no lifts which work.
The solutions modulo 27 are therefore: 3, 12, 14, 21.
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25. Local vs. Global

In analogy to Taylor series, we call information relating to a partic-
ular prime ‘local’ information, as opposed to ‘global’ information. So
while Z or Q are ‘global’ objects, Zp and Qp are ‘local’ objects because
they contain information ‘local’ to the prime p.

We have now seen the following implications:

f(x1, . . . , xn) = 0 is solvable in Z

=⇒
f(x1, . . . , xn) = 0 is solvable modulo pa for all a ≥ 1

⇐⇒
f(x1, . . . , xn) = 0 is solvable in Zp

This gives us a method to show something is not solvable in Z, just
by looking modulo prime powers. For example, consider the equation

x2 + y2 = 3z2

First off, we can assume that x, y and z do not all share a common
factor. For, if they did, then we could cancel that factor to reduce to
the case that they do not.

Then, we look modulo 4, where the only squares are 0 and 1 modulo
4. That means any solution x, y and z to the original equation modulo
4 would give a solution X = x2, Y = y2 and Z = z2 to

X + Y ≡ 3Z (mod 4)

where X, Y, Z ∈ {0, 1}. This implies 3Z ∈ {0, 3} and X+Y ∈ {0, 1, 2}.
So the only possibility is that 3Z ≡ X + Y ≡ 0 (mod 4). But this
entails that all of X, Y and Z are even. This implies that all of x, y
and z are even, a contradiction to our assumption that they have no
common divisor.

We can therefore conclude that x2+y2 = 3z2 has no integer solutions!
It is natural to ask whether there is a converse to this sort of argu-

ment; that is, provided we can find solutions modulo all integers, or
perhaps modulo all prime powers, then could we conclude that there
must be a solution in the integers? In general, no, but for certain types
of equations, we do obtain the following.

Hasse’s Principle, which may or may not be true for a particular
equation or family of equations, states:

If f(x1, . . . , xn) = 0 has non-trivial solutions in R and in Qp for all
p, then it has non-trivial solutions in Q.
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By non-trivial we mean to exclude the solution (0, 0, . . . , 0) to a
homogeneous equation.

In this context, Qp and R are called local fields and Q is a global
field, so that Hasse’s principle can be paraphrased as saying that f has
solutions globally if and only if it has solutions locally everywhere. (We
will not show it in this class, but Qp and R are the only completions
of Q with respect to a metric; this is the sense of ‘everywhere’ used
above).

It is an open question to classify those f for which the Hasse prin-
ciple may hold. It is known to be true, for example, for homogeneous
quadratics with integer squarefree coefficients, e.g. X2 + 3XY + 7Y 2

(this is called the Hasse-Minkowski Theorem). It is known to be false
for 3x3 +4y3 +5z3 = 0 (Selmer, 1951) and for x4−17y4 = 2z2 (Landau
and Reichardt).

What about equations of one variable? Any equation f(x) = 0 of
one variable can be ‘homogenized’ to a homogeneous equation of two
variables. By this I mean that a polynomial

anx
n + an−1x

n−1 + · · ·+ a2x
2 + a1x+ a0

becomes

anx
n + an−1x

n−1y + · · ·+ anx
2yn−2 + a1xy

n−1 + a0y
n

But notice that the first has solutions in Q, Qp or R if and only if the
second one does (as long as we exclude the solution (x, y) = (0, 0)).
For, if we have a solution x to the first, then (x, 1) is a solution to the
second. Conversely, if (x, y) 6= (0, 0) is a solution to the second, then
x/y is a solution to the first (this is safe because if y = 0, then x = 0).
As a result of this comment, we see that quadratic equations in one
variable satisfy the Hasse principle, by the Hasse-Minkowski Theorem.
(We haven’t proven this, so you can’t use it on your homework!)

26. Motivation to study quadratic forms, unique
factorisation in number rings, and quadratic residues

Lemma 26.1 (Fermat’s Lemma). If p ≡ 1 (mod 4), then x2 ≡ −1
(mod p) is solvable.

We will not provide a proof right now, but we’ll provide a corollary,
a theorem we have been anticipating:

Theorem 26.2. An odd prime p is a sum of 2 squares if and only if
p ≡ 1 (mod 4).
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Proof. On homework, we showed that if p ≡ 3 (mod 4), then p is not
the sum of two squares. (This was just a brief argument modulo 4.)

So suppose that p ≡ 1 (mod 4). By Fermat’s Lemma, p | x2 + 1 for
some x ∈ Z. So p | (x + i)(x − i) in the Gaussian integers, Z[i]. If p
were prime in Z[i], then p | x + i or else p | x− i. But suppose one of
these were true. Then,

x± i
p

=
x

p
± 1

p
i

is not a Gaussian integer, since 1/p /∈ Z. So it must be that p is not
prime. So p can be factored in the Gaussian integers, as

p = (a+ bi)(c+ di)

where the two factors are non-units. Since the norm N(p) = p2, and
N(a + bi), N(c + di) > 1 as they are non-units, the only possibility is
that

N(a+ bi) = N(c+ di) = p.

So a2 + b2 = p = c2 + d2. �

In fact, we’ve learned more from this proof.

Theorem 26.3. Let p be an odd prime. Then the following are equiv-
alent:

(1) p ≡ 1 (mod 4),
(2) x2 ≡ −1 is solvable (mod p)
(3) the quadratic form x2 + y2 (Gaussian norm) takes value p for

some x and y,
(4) p has a nontrivial factorisation in the Gaussian integers.

So in particular, an odd rational prime p is prime in the Gaussian
integers if and only if p ≡ 3 (mod 4).

This relationship generalises to other number rings, and provides mo-
tivation for studying quadratic residues (numbers which are the square
of something modulo p), quadratic forms (homogeneous degree two
forms), and unique factorisation. These are three of our main goals in
the course from now on.

27. Studying (Z/pZ)∗

By the Chinese Remainder Theorem, to study (Z/nZ)∗, it suffices to
study (Z/paZ)∗ for prime powers pa. We begin by studying (Z/pZ)∗.
Since all non-zero elements are invertible modulo p, Z/pZ is a finite
field. Thus we begin with a few lemmas about fields.
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Lemma 27.1. Let f(x) ∈ k[x], where k is a field, and suppose that
f(x) is not identically zero. Let n = deg f(x). Then f has at most n
distinct roots in k.

Proof. The proof proceeds by induction on n. The case of n = 1 is
immediate. Suppose that this has been proven for n− 1, and consider
f of degree n. If f(x) has no roots, then we are done. If f(x) has a
root α, then by the division algorithm in k[x] (which is a Euclidean
domain),

f(x) = q(x)(x− α) + r

for a constant r and some q(x) of degree n − 1; however, since α is a
root, we find r = 0.

If β 6= α is another root, then

0 = f(β) = q(β)(β − α)

which implies that q(β) = 0 (since k has no zero-divisors). Therefore β
is one of the at most n− 1 roots of q. Hence f(x) has at most n roots
(α together with the roots of q(x)). �

Corollary 27.2. Let f(x), g(x) ∈ k[x], where k is a field. Suppose that
n = deg f(x) = deg g(x). If f(αi) = g(αi) for n+ 1 distinct values

α1, α2, . . . , αn+1,

then f(x) = g(x).

Proof. Apply the Lemma to f(x) − g(x). Then it has n + 1 distinct
roots, hence is identically zero. �

Proposition 27.3.

xp−1 − 1 ≡ (x− 1)(x− 2) · · · (x− (p− 1)) (mod p)

Proof. Let f(x) = xp−1 − 1 − (x − 1)(x − 2) · · · (x − (p − 1)). Then
deg f(x) < p−1 since the leading terms cancel. But it has p−1 distinct
roots in Z/pZ (all the nonzero elements). So f(x) must be identically
zero, by Lemma 27.1. �

Corollary 27.4.

(p− 1)! ≡ −1 (mod p).

Proof. Set x = 0 in the previous proposition. �

Theorem 27.5 (Wilson’s Theorem).

(n− 1)! ≡ −1 (mod n)

if and only if n is prime or 1.
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Proof. We have just seen that the equation holds for n prime. For
n = 1, it holds also: 0! ≡ 1 ≡ −1 (mod 1).

If n = 4, then 3! ≡ 6 6≡ −1 (mod 4), so the equation does not hold.
If n > 4 is composite, then there exist some a, b such that n = ab,

with 1 < a, b < n.
If a 6= b, then n = ab | (n − 1)! so (n − 1)! ≡ 0 (mod n) and the

equation does not hold.
If a = b, then a and 2a appear in (n − 1)!, so 2n = 2a2 | (n − 1)!.

Therefore (n− 1)! ≡ 0 (mod n) and the equation does not hold. �

Proposition 27.6. If d | p − 1, then xd ≡ 1 (mod p) has exactly d
solutions.

Proof. Let dd′ = p− 1. Then define

g(x) =
xp−1 − 1

xd − 1
=

(xd)d
′ − 1

xd − 1
= (xd)d

′−1 + (xd)d
′−2 + · · ·+ xd + 1.

Then
xp−1 − 1 = (xd − 1)g(x).

If xd − 1 had fewer than d roots, then by Lemma 27.1, xp−1 − 1 would
have fewer than p − 1 roots. But it has roots 1, 2, . . . , p − 1 ∈ Z/pZ.
By this contradiction, we have proven the proposition. �

Note: this may fail when d - p− 1. For example, suppose p = 5, and
suppose we are interested in the roots of x3 − 1 modulo p. We can fill
out a chart:

x x2 x3

0 0 0
1 1 1
2 4 3
3 4 2
4 1 4

From this we see that there is only one root of the polynomial. In
particular,

x3 − 1

x− 1
= x2 + x+ 1

has no roots in Z/5Z. This implies that Z/5Z is not algebraically closed
(meaning there are polynomials over Z/5Z with no roots in Z/5Z).
(Recall that C is algebraically closed but R is not, because x2 + 1 has
no solution.)

Here’s a little exercise: show that xd ≡ 1 (mod p) can never have
exactly d− 1 roots.

Theorem 27.7. (Z/pZ)∗ is cyclic.
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Proof. In any finite commutative group G, there exists y ∈ G whose
order is the least common multiple of the orders of all the elements of
G. In particular, if n is the order of y, then xn = 1 for all x ∈ G.

So all elements of (Z/pZ)∗ are roots of xn− 1, but 0 is not, so it has
exactly p− 1 roots in Z/pZ.

But xn − 1 has at most n roots in Z/pZ (by Lemma 27.1).
So

p− 1 ≤ n.

On the other hand, 1, y, y2, . . . , yn−1 are all distinct, by the fact that
y has order n. Therefore, xn − 1 has at least n roots in Z/pZ, so

p− 1 ≥ n.

Hence n = p− 1 and

(Z/pZ)∗ = {1, y, y2, . . . , yn−1} = 〈y〉.
�

28. Primitive Roots

Definition 28.1. a ∈ Z is called a primitive root modulo n if a gen-
erates the group (Z/nZ)∗.

Equivalently, gcd(a, n) = 1 and a has multiplicative order φ(n).

Example 28.2. Let’s consider n = 5. We can form a chart

x x2 x3 x4

1 1 1 1
2 4 3 1
3 4 2 1
4 1 4 1

Therefore the primitive roots are 2 and 3.

If (Z/nZ)∗ is not cyclic, then there do not exist elements of order
φ(n) = |(Z/nZ)∗|, so there are no primitive roots.

Example 28.3. Let consider n = 8. Here φ(n) = 4. The chart of
powers of elements of (Z/nZ)∗ is:

x x2 x3 x4

1 1 1 1
3 1 3 1
5 1 5 1
7 1 7 1
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The orders of 3, 5 and 7 are 2. The order of 1 is, of course, 1. Nothing
has order 4, so there are no primitive roots. Equivalently, (Z/nZ)∗ is
not cyclic.

Our goal in studying primitive roots is to determine which n have
primitive roots. There are plenty of other interesting questions we
won’t address, however.

For example, one could ask for which p (or n) is a a primitive root?
We don’t know much about the answer to this question. Artin has
conjectured that a is a primitive root modulo infinitely many primes
p, and in fact, that it is a primitive root for the following percentage
of primes: ∏

p prime

(
1− 1

p(p− 1)

)
= 37.3955 · · ·%

In the 80s, Gupta, Murty and Heath-Brown were able to show that
there exist at most two a which are primitive roots for only finitely
many primes. Of course, without specifying which two (presumably
there are in fact none, not two).

We could also ask what is the smallest primitive root modulo any
particular prime p? And we should ask how to find primitive roots
effectively. These are both important problems.

29. Studying (Z/nZ)∗

Our goal in this section is to classify those n for which (Z/nZ)∗

is cyclic. By the Chinese Remainder Theorem, it suffices to ask the
question for prime powers. Our main results are:

Theorem 29.1. (Z/paZ)∗ is cyclic if and only if p is odd or p = 2 and
a = 1 or 2.

Corollary 29.2. A primitive root exists modulo n if and only if one
of the following holds:

(1) n = 1, 2, 4,
(2) n = pa for p an odd prime and a ≥ 1,
(3) n = 2pa for p an odd prime and a ≥ 1.

We’ll show how to derive the Corollary, then turn to proving the
Theorem.

Proof of Corollary. For the first two items, Theorem 29.1 says there is
a primitive root, so we’re done. For the last item,

(Z/2paZ)∗ ∼= (Z/2Z)∗ × (Z/paZ)∗ ∼= (Z/paZ)∗
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because (Z/2Z)∗ is the trivial group. So we have primitive roots in this
case.

For the converse, suppose that none of the items hold. Then we may
divide into three cases:

8 | n. Write n = 2am, where m is odd and a ≥ 3. Then

(Z/nZ)∗ ∼= (Z/2aZ)∗ × (Z/mZ)∗

However, the first factor is a non-cyclic subgroup. If (Z/nZ)∗ were
cyclic, it would only have cyclic subgroups. So (Z/nZ)∗ is not cyclic.
pq | n, p 6= q primes. Write n = paqbm, where m is coprime to p

and q, and a, b ≥ 1. Then

(Z/nZ)∗ ∼= (Z/paZ)∗ × (Z/qbZ)∗ × (Z/mZ)∗

However, the first two factors have even order, i.e. non-coprime orders.
By group theory, their product is not cyclic, so (Z/nZ)∗ is not cyclic.
n = 4p for p an odd prime.
Then

(Z/nZ)∗ ∼= (Z/4Z)∗ × (Z/pZ)∗

However, both factors have even order, so as in the last case (Z/nZ)∗

is not cyclic.
�

Lemma 29.3. If x ≡ y (mod pa), then xp ≡ yp (mod pa+1).

Proof. Suppose that

x ≡ y (mod pa).

Then

x = y + cpa

and therefore

xp = yp + pyp−1cpa +

(
p

2

)
yp−2c2p2a + · · ·+ cppp

a

.

But every term besides the first is divisible by pa+1. Therefore,

xp ≡ yp (mod pa+1).

�

Lemma 29.4. Let a ≥ 2, and let p 6= 2. Then

(1 + p)p
a−2 ≡ 1 + pa−1 (mod pa)
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Proof. Prove this by induction on a. For a = 2, this is trivial. Suppose
it has been proven for a. Then

(1 + p)p
a−2 ≡ 1 + pa−1 (mod pa)

Applying Lemma 29.3, we obtain

(1 + p)p
a−1 ≡ (1 + pa−1)p (mod pa+1)

Now we expand the right hand side with Binomial Theorem and argue
that all the terms are divisble by pa+1 except the first two. That is,

(1 + pa−1)p = 1 + p · pa−1 +

(
p

2

)
p2(a−1) + · · ·+ pp(a−1)

If k ≥ 3 or a ≥ 3, we have k(a− 1) ≥ a+ 1, so that

pa+1 |
(
p

k

)
pk(a−1).

Otherwise, a = k = 2, and the argument above doesn’t work; but here
p |
(
p
2

)
since p > 2, so p3 divides this term and we have

(1 + pa−1)p ≡ 1 + pa (mod pa+1)

and we are done. �

Now we will prove Theorem 29.1. For an odd prime, the outline is as
follows. First, find an element of order p−1, by lifting a primitive root
mod p using Hensel’s Lemma. Then, find an element of order pa−1.
These can then be combined to form an element of order pa−1(p− 1).

Proof of Theorem 29.1. Let p be an odd prime. Define

f(x) = xp−1 − 1 ∈ Z[x].

Then we have

f ′(x) = (p− 1)xp−2 ∈ Z[x].

Take g to be a primitive root modulo p. Then f(g) ≡ 0 mod p and
f ′(g) 6≡ 0 mod p, so by Hensel’s Lemma, there exists a g1 such that

f(g1) ≡ 0 (mod pa)

g1 ≡ g (mod p).

So g1 has order dividing p−1 modulo pa. But if g1 had a smaller order
n < p− 1, then

gn1 ≡ 1 (mod pa) =⇒ gn ≡ gn1 ≡ 1 (mod p)

which contradicts the choice of g as a primitive root modulo p. So g1

has order p− 1 modulo pa.
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Suppose that we consider b ≡ 1 (mod p). Then bp
a−1 ≡ 1 (mod p).

I claim that bp
a−1 ≡ 1 (mod pa). This is because bp

a−1
is a solution

modulo pa to the equation xp−1 ≡ 1 (mod pa) (this uses the fact that
φ(pa) = pa−1(p − 1)). However, by Hensel’s Lemma, there is a unique
lift of 1 modulo pa which satisfies xp−1 ≡ 1 (mod pa). Since 1 is such

a lift, it must be that bp
a−1 ≡ 1 (mod pa).

Now we must show that we can choose such a b having order equal
to pa−1. Let b = 1 + p. Then this is a consequence of Lemma 29.4,
which tells us that

bp
a−2 6≡ 1 (mod pa).

Since pa−1 and p−1 are coprime, group theory tells us that the order
of g1b1 is pa−1(p − 1) = φ(pa), and therefore g1b1 is a primitive root
modulo pa.

We are left with the case of p = 2. One can check directly that
(Z/2Z)∗ and (Z/4Z)∗ are cyclic. Now, in general for a ≥ 3, we claim
that

(Z/2aZ)∗ ∼= 〈−1〉 × 〈5〉.
where the first factor has order 2, and the second factor has order 2a−2.
Once we have established this, it is immediate that (Z/2aZ)∗ is not
cyclic.

In order to prove this, we show by induction that

52k−3 ≡ 1 + 2k−1 (mod 2k)

for all k ≥ 3. For k = 3, one verifies this easily. Now suppose it is
known for k. Then by Lemma 29.3,

52k−2 ≡ (1 + 2k−1)2 (mod 2k+1)

≡ 1 + 2 · 2k−1 + 22k−2 (mod 2k+1)

≡ 1 + 2k (mod 2k+1)

which completes the induction. This tells us both that

52k−3 6≡ 1 (mod 2k)

and also that
52k−2 ≡ 1 (mod 2k)

In other words, 5 has order 2k−2 modulo 2k. Finally, we must verify that
〈−1〉 and 〈5〉 are disjoint subgroups of (Z/2aZ)∗). This is a consequence
of the fact that

5` + 1 ≡ 2 (mod 4)

for all `, so that 5` 6≡ −1 (mod 4), implying

5` 6≡ −1 (mod 2k).
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Since the two subgroups are disjoint, we have proven the group isomor-
phism we needed. �

30. nth power residues

Definition 30.1. If m,n ∈ Z+ and gcd(a,m) = 1, then a is an n-th
power residue if xn ≡ a (mod m) is solvable.

Proposition 30.2. If (Z/mZ)∗ is cyclic, and gcd(a,m) = 1, then a is
an n-th power residue modulo m if and only if

aφ(m)/d ≡ 1 (mod m)

where d = gcd(n, φ(m)).

Proof. Let g be a primitive root modulo m. Let a = gb and x = gy.
Then

xn ≡ a (mod m) ⇐⇒ gny ≡ gb (mod m) ⇐⇒ ny ≡ b (mod φ(m))

This is solvable if and only if d | b. And if there exist solutions, then
there are d solutions. If d | b, then

aφ(m)/d ≡ gbφ(m)/d ≡ 1 (mod m).

Conversely,

aφ(m)/d ≡ 1 (mod m) =⇒ gbφ(m)/d ≡ 1 (mod m) =⇒ φ(m) | bφ(m)

d
=⇒ d | b.

�

In fact, we’ve also learned the following from this proof:

Proposition 30.3. The congruence

xn ≡ a (mod m)

has no solutions or else exactly gcd(n, φ(m)) solutions.

If m = 2epe11 · · · pe`` , then xn ≡ a (mod m) is solvable if and only if

xn ≡ a (mod 2e)

xn ≡ a (mod pe11 )

...

xn ≡ a (mod pe`` )

are all solvable.
So we are interested in prime powers.
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Proposition 30.4. Let p be an odd prime. Let p - a and p - n. If

xn ≡ a (mod p)

is solvable, then so is

xn ≡ a (mod pe)

for all e ≥ 1.
Furthermore, all these congruences have the same number of solu-

tions.

Proof. This is an application of Hensel’s Lemma. If

f(x) = xn − a
then f ′(x) = nxn−1. Each root α of f(x) is nonzero, so f ′(α) 6≡ 0
(mod p). So there’s a unique lift to α′ with

f(α′) ≡ 0 (mod pe).

�

Proposition 30.5. Let 2k || n (i.e. the exact power of 2 dividing n is
2k), and let a be odd. Suppose that

xn ≡ a (mod 22k+1)

is solvable. Then

xn ≡ a (mod 2e)

is solvable for all e ≥ 1. All these congruences have the same number
of solutions.

Proof. Exercise. �

Example 30.6. x2 ≡ 5 (mod 4) is solvable (x = 1), but x2 ≡ 5
(mod 8) is not solvable.

Proposition 30.7. Let a be odd, and let e ≥ 3. Then

(1) If n is odd, then xn ≡ a (mod 2e) has a unique solution.
(2) If n is even, then xn ≡ a (mod 2e) has a solution if and only if

the following things hold:
(a) a ≡ 1 (mod 4)

(b) a2e−2/d ≡ 1 (mod 2e) where d = gcd(n, 2e−2)
And if there are solutions, then there are 2d of them.

Proof. Exercise. �
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31. Quadratic residues

Definition 31.1. The Legendre symbol is defined as follows. Let a ∈ Z
and let p be an odd prime. Define(

a

p

)
=

 0 a ≡ 0 (mod p)
1 a is a QR, i.e. x2 ≡ a is solvable
−1 a is a QNR, i.e. x2 ≡ a is not solvable

Example 31.2. (
17

5

)
=

(
2

5

)
= −1

since the squares modulo 5 are 1 and 4.(
101

97

)
=

(
4

97

)
= 1(−42

61

)
= 1

This last is because 1022 ≡ 19 (mod 61), so 19 ≡ (1011)2, i.e. −42 ≡
182 (mod 61).

Here are the most important first properties of the Legendre symbol.

Proposition 31.3. Let p be an odd prime. Then

(1)
(
a
p

)
≡ a

p−1
2 (mod p)

(2)
(
−1
p

)
≡ (−1)

p−1
2 (mod p)

(3)
(
ab
p

)
=
(
a
p

)(
b
p

)
Proof. The second and third parts follow immediately from the first
part.

Let g be a primitive root for (Z/pZ)∗. The map x 7→ x2 is 2− to− 1
on (Z/pZ)∗, since there is no residue equivalent to its negative, hence
all square roots come in pairs if they come at all. In particular, there
are p−1

2
quadratic residues and p−1

2
quadratic non-residues. The p−1

2
even powers of g are all quadratic residues, so the odd powers are non-
residues.

We can write

a ≡ gi (mod p)

for some i. Then we have two cases.
i is even. In this case

a ≡ (gi/2)2 (mod p)
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so a is a quadratic residue. Furthermore,

a
p−1
2 ≡ g

i(p−1)
2 ≡ 1 (mod p)

since p− 1 | i(p−1)
2

. So we have verified the statement.
i is odd. In this case a ≡ gi (mod p) is a non-residue. Furthermore,

a
p−1
2 ≡ g

i(p−1)
2 6≡ 1 (mod p)

since p− 1 - i(p−1)
2

. But

(a
p−1
2 )2 ≡ ap−1 ≡ 1 (mod p)

so
a

p−1
2 ≡ −1 (mod p).

So we have verified the statement.
�

Since
(
−1
p

)
= (−1)

p−1
2 , we obtain the following corollary.

Corollary 31.4. x2 ≡ −1 (mod p) is solvable if and only if p ≡ 1
(mod 4)

I.e., we have proven Fermat’s Lemma!
We also get a nice result on the infinitude of primes congruent to 1

modulo 4. If you recall, the method for primes congruent to 3 modulo
4 used on homework didn’t extend to this case.

Corollary 31.5. There are infinitely many primes congruent to 1 mod-
ulo 4.

Proof. Suppose that 2, p1, . . . , pm are a finite set of primes. Let

N = 4p2
1p

2
2 · · · p2

m + 1.

Then N > 1 must have some prime factors. Suppose that one of them

is p | N . Then
(
−1
p

)
= 1 by the form of N . So p ≡ 1 (mod 4). But p

cannot be among the finite list we began with, as p ≡ 1 (mod pi) for
those pi. Thus we have found, given any finite list of primes, a new
prime congruent to 1 modulo 4. Hence there are infinitely many primes
congruent to 1 modulo 4. �

32. Quadratic Reciprocity

You looked a little at data about quadratic residues on your first

homework. You may have noticed that if you graph
(
p
q

)
there is some

kind of symmetry around the diagonal. By staring at tables of such
things, Gauss came up with a conjecture. Here’s the full statement.
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Theorem 32.1. Let p and q be odd primes. Then

(1)
(
−1
p

)
= (−1)

p−1
2

(2)
(

2
p

)
= (−1)

p2−1
8

(3)
(
p
q

)(
q
p

)
= (−1)

p−1
2
· q−1

2

In particular, if p and q are both 1 mod 4, then
(
p
q

)
=
(
q
p

)
. This

is really weird ; why should the existence of a square with residue p
modulo q tell you anything about the existence of a square with residue
q modulo p? It’s just darn weird.

Example 32.2. Let’s demonstrate the use of Quadratic Reciprocity as
motivation for proving it. It makes determining whether something is
a quadratic residue very fast. By the multiplicativity of the Legendre
symbol, (−42

61

)
=

(−1

61

)(
2

61

)(
3

61

)(
7

61

)
.

We can evaluate each of these symbols in turn:(−1

61

)
= (−1)60/2 = 1

(
2

61

)
= (−1)

612−1
8 = 1(

3

61

)
=

(
61

3

)
(−1)

2
2
· 60
2 =

(
61

3

)
=

(
1

3

)
= 1(

7

61

)
=

(
61

7

)
(−1)

6
2
· 60
2 =

(
5

7

)
=

(
7

5

)
(−1)

4
2
· 6
2 =

(
7

5

)
=

(
2

5

)
= (−1)

24
8 = −1

Therefore, taking the product,(−42

61

)
= 1 · (−1) · 1 · (−1) = 1

Alternatively, we could notice that(−42

61

)
=

(
19

61

)
=

(
61

19

)
(−1)

60
2
· 18
2 =

(
4

19

)
= 1

which is faster because 19 is a prime. Later, we will introduce the Jacobi
symbol, which will remove the need to factor into primes in order to
‘reverse’ the symbol.
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Lemma 32.3 (Eisenstein’s Lemma). Let p be an odd prime, and a ∈ Z
coprime to p. Then

(
a

p

)
= (−1)

∑
2≤n≤p−1

even

⌊
an

p

⌋
.

The notation bxc denotes the floor function: its value is the greatest
integer less than or equal to x.

Proof. For even n in the interval 2 ≤ n ≤ p − 1, let r(n) be the least
positive residue of an modulo p (i.e. the smallest residue which is
positive). Consider the following list of numbers:

(−1)r(2)r(2), (−1)r(4)r(4), . . . , (−1)r(p−1)r(p− 1).

First, these are all distinct modulo p. For, if

(−1)r(n1)r(n1) ≡ (−1)r(n2)r(n2) (mod p)

then

(−1)r(n1)−r(n2)an1 ≡ an2 (mod p)

which implies that n1 ≡ ±n2 (mod p). But the ni are all even, so this
can only happen if n1 ≡ n2 (mod p), which goes against our original
assumptions.

Second, the list contains exactly p−1
2

numbers.
Third, the least positive residues of all these numbers are even. In

fact,

(−1)r(n)r(n) =

{
r(n) if r(n) is even
p− r(n) if r(n) is odd

Therefore, the list is a rearrangement of the list

2, 4, 6, . . . ,
p− 1

2
.

Thus, taking the product of the two lists, we have

(−1)r(2)+r(4)+···+r(p−1)2a·4a·6a · · · (p−1)a ≡ 2·4·6 · · · (p−1) (mod p).

Since the product 2 · 4 · 6 · · · (p− 1) is coprime to p, we conclude that

(−1)r(2)+r(4)+···+r(p−1) ≡ a
p−1
2 (mod p).

On the other hand,

an

p
=

⌊
an

p

⌋
+
r(n)

p
.
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So, since p is odd and n is even,⌊
an

p

⌋
= r(n) (mod 2)

This implies that

a
p−1
2 ≡ (−1)

∑
2≤n≤p−1

even

⌊
an

p

⌋
.

Finally, by Proposition 31.3,(
a

p

)
= a

p−1
2 (mod p).

Putting these two equations together proves the statement of the Lemma.
�

Proposition 32.4. (
2

p

)
= (−1)

p2−1
8

Proof. We use Eisenstein’s Lemma. In particular, define µ to be

µ :=
∑

2≤n≤p−1
even

⌊
2n

p

⌋
=
⌊p

4

⌋
−
⌊p

2

⌋
= #{x ∈ Z : p/4 < x < p/2}.

Suppose that p = 8k+ r. Then r = 1, 3, 5 or 7. The interval of interest
becomes

2k +
r

4
< x < 4k +

r

2
.

We only care about the parity of the number of integers x in this
interval, which is the same as the parity of the number of integers x in
the interval

r

4
< x <

r

2
.

For r = 1, there are no solutions, hence µ is even, but so is p2−1
8

. For

r = 3 or r = 5, there is one solution, so µ is odd, but so is p2−1
8

.

For r = 7, there are two solutions, so µ is even, but so is p2−1
8

. By
Eisenstein’s Lemma, we have proven the required statement. �

33. A proof of Quadratic Reciprocity

The proof consists of two parts: the first is Eisenstein’s Lemma,
which is similar to Gauss’ Lemma. The second is the main proof,
which relies on Eisenstein’s Lemma and consists of a simple geometric
argument.



72 KATHERINE E. STANGE

Proof of Quadratic Reciprocity. I need to draw some pictures *****************
�

34. The Jacobi Symbol

Definition 34.1. Let b be a positive odd integer. Write b = qe11 · · · qess
for its prime factorisation. Then for any a, we define the Jacobi Sym-
bol (a

b

)
=

s∏
j=1

(
a

qj

)ej
.

We will use the same notation as the Legendre symbol because these
two definitions agree whenever they are both defined.

Note that if gcd(a, b) > 1, then
(
a
b

)
= 0. And if gcd(a, b) = 1, then(

a
b

)
∈ {1,−1}.

Warning! It is very important to note that if b is not prime, then
in general (a

b

)
= 1 6=⇒ a is a QR modulo b.

For example, (
2

15

)
=

(
2

5

)(
2

3

)
= −1 · −1 = 1

but x2 ≡ 2 (mod 15) has no solutions (otherwise it would have solu-
tions modulo 5 and 3, also).

However, it is still the case that

a a QR modulo b =⇒
(a
b

)
= 1,

since whenever a is a QR modulo b, a must also be a QR for each prime
factor of b.

Proposition 34.2. Let b be an odd positive integer. Then a is a QR
modulo b if and only if a is a QR modulo every prime p | b.
Proof. Write b = qe11 · · · qess as the prime factorisation of b. By the
Chinese Remainder Theorem, a is a QR modulo b if and only if a is a QR
modulo every prime power qeii . By Hensel’s Lemma (via Proposition
30.4), for qi odd, a is a QR modulo qeii if and only if a is a QR modulo
qi. �

The following is a catalogue of the properties of the Jacobi Symbol.

Proposition 34.3. Let b, b1, b2 be positive odd integers. Then

(1)
(
a1a2
b

)
=
(
a1
b

) (
a2
b

)
.

(2)
(
a
b

)
= 0 if gcd(a, b) > 1.
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(3)
(

a
b1b2

)
=
(
a
b1

)(
a
b2

)
.

(4) a1 ≡ a2 (mod b) implies
(
a1
b

)
=
(
a2
b

)
.

(5)
(−1
b

)
= (−1)

b−1
2 .

(6)
(

2
b

)
= (−1)

b2−1
8 .

(7) If gcd(b1, b2) = 1, then(
b1

b2

)(
b2

b1

)
= (−1)

b1−1
2
· b2−1

2 .

Proof. The first four items are consequences of the definition of the Ja-
cobi symbol and the corresponding properties for the Legendre symbol,
so they are left as an exercise for the reader.

Write b = q1 · · · qs for the prime factorisation of b, where repeats are
allowed, i.e. the qi may not be distinct.

Item (5) If x and y are odd, then

xy − 1

2
−
(
x− 1

2
+
y − 1

2

)
=

(x− 1)(y − 1)

2
≡ 0 (mod 2).

Hence
x− 1

2
+
y − 1

2
≡ xy − 1

2
(mod 2)

Therefore,
s∑
i=1

qi − 1

2
≡ b− 1

2
(mod 2).

But therefore,(−1

b

)
=

s∏
i=1

(−1

qi

)
= (−1)

∑ qi−1

2 = (−1)
b−1
2 .

Item (6) If x and y are odd, then

x2y2 − 1

8
−
(
x2 − 1

2
+
y2 − 1

8

)
=

(x2 − 1)(y2 − 1)

8
≡ 0 (mod 8).

Hence
x2 − 1

8
+
y2 − 1

8
≡ x2y2 − 1

8
(mod 2)

Therefore,
s∑
i=1

q2
i − 1

8
≡ b2 − 1

8
(mod 2).

But therefore,(
2

b

)
=

s∏
i=1

(
2

qi

)
= (−1)

∑ q2i−1

8 = (−1)
b2−1

8 .
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Item (7) Write prime factorisations for both b1 and b2, repeats
allowed:

b1 = p1 · · · ps, b2 = q1 · · · qt.

Then (
b1

b2

)
=
∏
j

∏
i

(
pi
qj

)
=
∏
j

∏
i

(
qj
pi

)
(−1)

pi−1

2
·
qj−1

2 .

=

(
b2

b1

)
(−1)

∑
i

∑
j

pi−1

2
·
qj−1

2 .

However, we have

∑
i

∑
j

pi − 1

2
·qj − 1

2
=

(∑
i

pi − 1

2

)(∑
j

qj − 1

2

)
≡ b1 − 1

2
·b2 − 1

2
(mod 2).

�

The following theorem is, in fact, equivalent to Quadratic Reciprocity
in the sense that the proof of each follows from the other fairly quickly.

Theorem 34.4. Let p and q be distinct odd primes, and let a ≥ 1.

Then if p ≡ ±q (mod 4a), then
(
a
p

)
=
(
a
q

)
.

Proof. First, I claim that it suffices to do the case of odd prime a.
For, suppose I already know this. If a = 2e0pe11 · · · pess is the prime
factorisation of a, then

p ≡ ±q (mod 4a) =⇒ p ≡ ±q (mod 4pi) =⇒
(
pi
p

)
=

(
pi
q

)
.

But since p ≡ ±q (mod 8), then
(

2
p

)
=
(

2
q

)
, and therefore we are

done, by the definition of the Jacobi symbol.
Hence, we will assume that a is odd and prime. We will now do the

case that p ≡ q (mod 4a). The other case is similar and is left for the



MATHEMATICS 6110, FALL 2013 INTRODUCTORY NUMBER THEORY 75

reader. We have
(
p
a

)
=
(
q
a

)
, and therefore,(

a

p

)
= (−1)

p−1
2
·a−1

2

(p
a

)
= (−1)

p−1
2
·a−1

2

(q
a

)
= (−1)

p−1
2
·a−1

2
+ q−1

2
·a−1

2

(
a

q

)
= (−1)(a−1)· p+q−2

4

(
a

q

)

Write p = q + 4at for some t. Then since q is odd,

p+ q − 2 = q + 4at+ q − 2 = 2(q − 1) + 4at ≡ 0 (mod 4).

Therefore,
(
a
p

)
=
(
a
q

)
. �

Theorem 34.5. An integer a is a square if and only if a is a quadratic
residue or 0 modulo all primes p.

Proof. Exercise. �

This is an example of the Hasse principle.

35. Some questions about QRs and QNRs

Let Pr be the set of QRs modulo p, and let Pn be the set of QNRs
modulo p. One of the main questions a number theorist may ask is to
describe the distribution of Pr in the interval 1, 2, . . . , p− 1.

We already know a few things:

(1) The sets Pr and Pn are both of size p−1
2

.
(2) If p ≡ 1 (mod 4), then:

a ∈ Pr ⇐⇒ p− a ∈ Pr
(3) If p ≡ 3 (mod 4), then:

a ∈ Pr ⇐⇒ p− a ∈ Pn
Here’s something else we can show:

Proposition 35.1. The maximum number of residues between succes-
sive elements of Pn in the list

1, 2, . . . , p− 1.

is 2
√
p+ 1.
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Proof. The squares
1, 4, 9, 16, . . . , (b√pc)2

all lie in this interval and are QRs. Furthermore, the next square,
(b√pc + 1)2 > p − 1 so it is not in the interval. The difference of
consecutive squares is odd numbers:

(n+ 1)2 − n2 = 2n+ 1.

Therefore, the largest gap we see is at most 2
√
p+ 1. �

Vinogradov has conjectured the following:

Conjecture 35.2. Let ε > 0. Then

(1) The number of elements between successive elements of Pn in
the list

1, 2, . . . , p− 1

is Oε(p
ε), i.e. it is bounded by Cεp

ε for some constant Cε de-
pending on ε.

(2) Let N(p) be defined as the smallest element of Pn in the list

1, 2, . . . , p− 1.

Then,

lim
p→∞

N(p)

pε
= 0.

This conjecture is still outstanding, although Burgess in 1957 showed
that for large p, N(p) < p1/4+ε. The Riemann Hypothesis would imply
that N(p) ≤ c1(ln p)2. On the other hand, this must be close to best
possible, since Salié (1949) showed that N(p) > c2(ln p) for infinitely
many p.

36. Binary Quadratic Forms

A monomial axk11 · · ·xknn has degree k1 + · · ·+ kn. A polynomial in n
variables has degree equal to the maximum of the degrees of its mono-
mials. Such a polynomial is homogeneous (or a form) if all monomials
have the same degree.

A quadratic form is often defined as a homogeneous polynomial of de-
gree two. A binary quadratic form is a quadratic form in two variables.
An integral binary quadratic form is a quadratic form with integer co-
efficients.

In other words, we are talking about things of the form

f(x, y) = ax2 + bxy + cy2

for some a, b, c ∈ Z. An integral binary quadratic form is primitive if
a, b, c do not have a common factor.
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Here’s the more abstract approach to quadratic forms.
Let V be an n-dimensional K-vector space. A symmetric bilinear

form is a map B : V × V → K such that

(1) B(v, w) = B(w, v)
(2) B(λu+ v, w) = λB(u,w) + b(v, w)

Note that this implies that B(0, v) = B(v, 0) = 0 for all v.

Definition 36.1. A function f : V → K is a quadratic form in terms
of any basis of V if

(1) f(av) = a2f(v)
(2) The function B(v, w) := 1

2
(f(v + w) − f(v) − f(w)) is a sym-

metric bilinear form.

Theorem 36.2. These two definitions of a quadratic form agree! To be
precise, a quadratic form as in the previous definition, when expressed
as a function of coefficients with respect to a basis, is a binary degree
two homogeneous polynomial. Conversely, such a polynomial, consid-
ered as a function on a vector space of dimension two, is a quadratic
form as in the previous definition.

We will only prove this for V of dimension 2, to keep notation man-
ageable. A corresponding result for higher dimension applies.

Note that one of the definitions is basis dependendent and the other
is not. In fact, a choice of basis specifies one of many polynomial
quadratic forms that agrees with one functionally-defined quadratic
form.

Proof. In the forward direction, we must simply check the properties:

(1) f(a(x, y)) = f(ax, ay) = a2f(x, y).
(2) If we write f(x, y) = ax2 + bxy + cy2 and expand

B((x1, y1), (x2, y2)) =
1

2
(f(x1 + x2, y1 + y2)− f(x1, y1)− f(x2, y2)) ,

then the resulting polynomial is symmetric in (x1, y1) versus
(x2, y2) and is linear in (x1, y1).

Let e1, e2 be a basis for V over K. Then

B(xe1 + ye2, xe1 + ye2) = x2B(e1, e2) + xy(2B(e1, e2)) + y2B(e2, e2)

By the definition of B, we have f(v) = B(v, v). Then since

B(v + w, v + w)−B(v, v)−B(w,w) = 2B(v, w),

we have

f(xe1 + ye2) = x2f(e1) + xy(f(e1 + e2)− f(e1)− f(e2)) + y2f(e2).

�



78 KATHERINE E. STANGE

Once we choose a basis, any symmetric bilinear form has a matrix
representation as

(
x2 y2

)( a b/2
b/2 c

)(
x1

y1

)
= ax1x2 + b/2x1y2 + b/2x2y1 + cy1y2.

And corresponding quadratic form

ax2 + bxy + cy2.

It is crucial here that a quadratic form in the sense of the functional
equation definition corresponds to many polynomial forms – in fact,
one for each basis! If we change basis, this affects the matrix equation
above; instead of matrix M , we obtain BTMB for some invertible
B. This corresponds to a change of variables x 7→ Bx. Since, as
number theorists, we are interested in integral forms, we should require
B ∈ GL2(Z), so that it is a change of basis for the lattice Z2, which
is where we consider our form to take values. This is called GL2(Z)-
equivalence of forms.

Proposition 36.3. Any quadratic form satisfies

f(v + w) + f(v − w) = 2(f(v) + f(w)).

Proof. This is a consequence of the relation

B(v, w) +B(v,−w) = 0

where we plug in B(v, w) = 1
2
(f(v+w)−f(v)−f(w)) and use the fact

that f(w) = f(−w). �

37. The big questions for a quadratic form

The study of quadratic forms had its origin in the question of which
numbers or primes are the sums of two squares. The big questions are:

(1) What integers does an integral binary quadratic form represent?
(2) What is the smallest value it represents?
(3) How many representations does a given integer have?

To access these questions, we’ll consider quadratic forms that corre-
spond to different bases (i.e. the same functionally-defined form) to be
equivalent (we’ll call this GL2(Z)-equivalent), and study these equiva-
lence classes. Equivalent forms represent the same set of integers.
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38. Conway’s Sensual Quadratic Form

This section follows Conway and Fung, “The Sensual Quadratic
Form”, first chapter. An absolutely delightful book!

A lax vector in Z2 is an equivalence class of vectors up to sign, i.e.
±u. A basis can also refer to a set of two lax vectors which form a
basis for Z2 (a change of signs has no bearing on whether two vectors
form a basis).

A superbasis is a set of three lax vectors wuch that any two of them
form a basis for Z2. If u and v form a basis, then the only superbases
containing u and v are

{±u,±v,±(u+ v)} and {±u,±v,±(u− v)}.
Each superbasis contains three bases. Since each basis is contained in
two superbases, we can draw a valence three graph representing the
bases and superbases: edges are bases and vertices are superbases. We
can place this graph into the plane in such a way that we can label
the regions of the plane with lax vectors so that the following property
holds: the boundary of each region consists of all bases and superbases
containing that vector.

u

v

u− v u + v

2u− v

3u− v

3u− 2v

u− 2v

2u + v

u + 2v

2u + 3v

u + 3v

3u + 2v

3u + v

2u− 3v

u− 3v

The parallelogram law then has a nice interpretation in terms of the
picture: the three terms

f(u− v), f(u) + f(v), f(u+ v)
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form an arithmetic progression. The vectors u, v, u + v and u − v
surround one edge of the topograph: we can label these regions with
the values of f at the respective vectors, and then we can label that
edge with the common difference of the progression. The arrow will
indicate the direction in which the progression increases.

For example, if f(u + v) = 5, f(u) = 4, f(v) = 3 and f(u− v) = 9,
we have the following picture:

4

3

5
2

9

Starting with values surrounding any one vertex, this process, using
the parallelogram law, will fill out all the values in the topograph. For
example,

4

3

5
2

9

10

23

6

15

4

12

8

20

18

28

26

14 10

14

16

14

45

60

55

37 25

31

36

33

Of course, I haven’t shown that this topograph is a tree, or is one
connected piece; maybe it has many components, or maybe it has loops.
We will do a little work to verify this:

Lemma 38.1 (The Climbing Lemma). Consider one location in the
tree, given by this picture:
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a

b

c
P Q

h

Suppose a, b, h > 0. Then c > 0 and the edges emerging from the
vertex labelled Q point away from Q, and furthermore, the edge-labels
are larger than h.

Proof. By the arithmetic progression rule, c = a+ b+h > 0. Therefore
we can fill out some more of the topograph:

a

b

a+ b+ h

4a+ b+ 2h

a+ 4b+ 2h

h
2a+ h

2b+ h

�

We will set some terminology concerning the values of a quadratic
form.

Definition 38.2. A form is indefinite if it takes on both positive and
negative values. A form is positive semidefinite (negative semidefinite)
if f(x, y) ≥ 0 (f(x, y) ≤ 0) and the form represents zero. A form is
positive definite (negative definite) if f(x, y) > 0 (f(x, y) < 0).

A well is a vertex in the topograph such that no arrows point into
it. Note that if h = 0, we may label an edge with no arrow.

Now, consider a positive definite form. By the climbing lemma, if we
start anywhere and walk downhill (i.e. against arrows), we’ll eventually
have to stop, since we will see decreasing numbers as we walk, by the
Climbing Lemma. Thus we’ll have to have reach a well.
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Lemma 38.3 (The Well Lemma). Let f be a positive definite quadratic
form. The values around a well are the smallest values of the form.

Proof. A well looks like this:

c

ab

2β

2γ

2α

We have

2α = b+ c− a
2β = c+ a− b
2γ = a+ b− c

α, β, γ ≥ 0

Therefore

a = β + γ, b = α + γ, c = β + α.

So

a+ b ≥ c, a+ c ≥ b, b+ c ≥ a.

Let e1, e2, e3 be the superbasis surrounding the well; suppose e1 + e2 +
e3 = 0, and suppose that

f(e1) = a, f(e2) = b, f(e3) = c.

Let us write a general vector v as

v = m1e1 +m2e2 +m3e3

Claim: the following formula (Selling’s Formula) holds:

f(v) = α(m2 −m3)2 + β(m1 −m3)2 + γ(m1 −m2)2.

The proof is that both sides are quadratic forms which agree on the
superbasis e1, e2, e3. But the values on a superbasis determine a form:
for example, recall the useful formula

f(xe1 + ye2) = x2f(e1) + xy(f(e1 + e2)− f(e1)− f(e2)) + y2f(e2).
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For all v besides the ei, the corresponding mi are all distinct so, by
Selling’s Formula,

f(v) ≥ α + β + γ ≥ a, b, c.

�

As a consequence, if α, β, γ > 0, then the well is unique. There’s
also the possibility of a double well, i.e. where one of α, β or γ is zero.
It looks like this:

a

b

a+ ba+ b

a+ 4b a+ 4b

4a+ b4a+ b

0

In this case, the well is not unique, but there are two identical wells
adjacent to each other.

A ‘triple well’, i.e. where two of α, β and γ are zero, is not possible.
For, suppose without loss of generality that b + c = a and c + a = b.
Then c = 0 which is not possible for a positive definite quadratic form.

Proposition 38.4. The topograph is a connected tree.

Proof. Consider a form with a simple well (i.e. not a double well). We
might as well take the form with α = β = γ = 1. Then, starting
anywhere in the topograph, climb down against the arrows. One must
eventually stop, and if one stops, one has reached a well. But this
well is the unique well, i.e. the spot in the topograph with the three
smallest values. Here it is:
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2

22

2

2

2

So all components contain the well: in other words, the topograph
is connected.

Furthermore, the climbing lemma also rules out loops in the topo-
graph; since on a path, the numbers in your neighbourhood can only
increase, you cannot return to your starting point.4 �

39. The discriminant of a quadratic form

Let’s look at a piece of the topograph surrounding any one edge, and
the corresponding superbasis:

a = f(e1)

b = f(e2)

a+ b+ h = f(e1 + e2)a+ b− h
h

Knowing the values of the form around this edge tells us the whole
form. The form is given by

f(xe1+ye2) = x2f(e1)+xy(f(e1+e2)−f(e1)−f(e2))+y2f(e2) = ax2+hxy+by2.

In other words, this is the form when expressed in terms of basis e1,
e2. We can see all the different GL2(Z)-equivalent polynomial forms by
looking around each edge! Actually, we need to be slightly careful here;
if we change the order of the basis, we get bx2+hxy+ay2. If we imagine
pointing the other way on the same edge, we get ax2−hxy+ by2. And
if we do both, we get bx2 − hxy + ay2. All of these are equivalent, but
they are all different ways to “read” the one edge.

The discriminant of a quadratic form is defined in terms of its coef-
ficients:

∆f = h2 − 4ab.

4I forgot to mention this in class!
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(This is just the same as the discriminant of the quadratic equation we
obtain if y = 1.) We can view the discriminant as given by the values
surrounding an edge in the topograph.

The discriminant is a square in Z if and only if f factors into linear
terms in Z. For example, x2 − y2 = (x − y)(x + y) has ∆ = 4, while
10x2− 27xy+ 18y2 = (2x− 3y)(5x− 6y) has ∆ = 9. I leave the formal
proof of this as an exercise.

Proposition 39.1. The discriminant doesn’t depend on the choice of
edge used to obtain it; therefore it is a property of the form itself.

Proof. Here are two adjacent edges:

a

a+ b+ h

h′ = 2a+ h

h

b

b+ 4a+ 2h

It is a brief calculation to check that the discriminants are the same at
both edges h and h′:

(2a+ h)2 − 4a(a+ b+ h)− (h2 − 4ab) = · · · = 0.

Since the topograph is connected, this is enough to guarantee that the
discriminant is an invariant of the form, even though we defined it by
looking at one edge. �

This tells us that the discriminant is an invariant under GL2(Z)-
equivalence of the polynomial forms.

Proposition 39.2. A positive definite or negative definite form has a
negative discriminant.
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Proof. We will do the proof for a positive definite form; a negative
definite one is similar. We can define the discriminant using one edge
of the well.

c

ab

2β

2γ

2α

We obtain

∆f = (c+ a− b)2 − 4ac = a2 + b2 + c2 − 2ac− 2ab− 2cb ≤ 0.

Recall that

a+ b ≥ c > 0

a+ c ≥ b > 0

b+ c ≥ a > 0

and furthermore, at least two of the ‘≥’ are strict, by the same com-
putation that showed there are no ‘triple wells’. This implies that

ac+ bc ≥ c2 > 0

ab+ bc ≥ b2 > 0

ab+ ac ≥ aa > 0

where again at least two of the ‘≥’ are strict. From this we conclude
that

2(ac+ ab+ cb) > a2 + b2 + c2.

This tells us that the discriminant is negative. �

An indefinite form which does not represent zero must have a positive
region adjacent to a negative one. An edge between regions of different
sign will be called a river edge (shown in the diagrams as a dotted
edge). If we have a river edge entering a vertex, another river edge
must come out:
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+

−

+

In this way, we obtain a path with no endpoints. This is the river.
Here’s an example of an indefinite form with its river:

2

−3

5

17

2

−7

−7

−22
−55

−43

−30

−3 33

42

17

−7
By the Climbing Lemma, as we move away from the river, we larger

numbers in absolute value (either negative or positive, depending which
‘bank’ we are climbing). This implies that the river is unique – we can’t
run into another river by climbing away from the first.

Proposition 39.3. An indefinite form not representing zero has a pos-
itive discriminant.

Proof. Take a river edge to compute the discriminant, so the two ad-
jacent regions have values a > 0 and c < 0. Then

∆f = h2 − 4ac = (+)− 4(+)(−) > 0.

�

Proposition 39.4. The river is periodic.

Proof. Consider the discriminant as defined by a river edge. Then

|∆f | = h2 + 4|ac|
so that

|h| ≤
√

∆f , |ac| = 1

4
(|∆f | − h2).
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From this we see that there are only finitely many possible values for
h and only finitely many possible value for a and c along a river edge.
Therefore, since the river is infinite, it must eventually see the same
a, c, h again.

But once we see the same values surrounding an edge, we must begin
repeating everything, as the values around and on an edge determine
the values everywhere else. �

Here’s an example river, given by 3x2 + 6xy − 5y2. We have

f(1, 0) = 3, f(0, 1) = −5, f(1, 1) = 4

and therefore these values surround a piece of the river. Following it,
we see

4 33 44

−5 −5 −8 −5 −5−8−5−5

19 19

40434340

19 19

40 434043

−24 −29 −29−29−24 −29 −24

From this picture (and the Climbing Lemma), we may immediately
conclude that 3x2 + 6xy − 5y2 = 7 has no solution in the integers.

If a form represents zero, the corresponding region is called a lake.
In general, by the arithmetic progression rule (aka parallelogram law),
the regions surrounding the lake have values in arithmetic progression:
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0

a− h

a

a+ h

a− 2h

h

h

h
h

Proposition 39.5. A positive or negative semidefinite form has zero
discriminant.

Proof. If f is a positive semidefinite form, then h = 0 (because oth-
erwise this arithmetic progression along the shore contains negative
values). Then we are in a very special situation that looks like this:

0

a

a

a

a

0

0

0

0

4a

4a

4a

9a

9a
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Taking the discriminant from a lake edge, say, we see that ∆f = 0. �

Proposition 39.6. An indefinite form which represents zero has non-
zero square discriminant.

Proof. We have a lake, but we are not in the special case of the special
semidefinite form lake. So along the shore, we see positive and negative
terms. Therefore we cross the river somewhere (or another lake). If we
cross a river, the river flows into (out of?) the lake. We have something
like this:

0

−

+

+

−

By periodicity, the river must eventually hit another lake:

0

+

−

−

+

Therefore the river is of finite length. It is possible, of course, that it
has zero length:
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0 0

a 2a

3a

−3a

−2a−a−2a

−3a

2a

3a

In any of these cases, take an edge which is a shore of a lake, and
consider the discriminant one obtains: it is h2. �

If the discriminant of a form is a square, that means the form factors
over Z: if so, then it must take the value 0 (for example, one factor
ax+ by vanishes when x = −b, y = a). With this remark, we have now
collected information about the discriminant of all the different types
of forms. We can form a table summarizing what we’ve learned. To
tell the difference between positive or negative (semi)definite forms, it
suffices to check whether the coefficients a or c are positive or negative.

In summary, then for a quadratic form ax2 + bxy + cy2,

condition values of form
∆f > 0 square +,−, 0
∆f > 0 nonsquare +,−
∆f = 0, and a > 0 or c > 0 +, 0
∆f = 0, and a < 0 or c < 0 −, 0
∆f < 0, a > 0 +
∆f < 0, a < 0 −
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40. Projective Linear Groups

Here are some extremely useful matrix groups:

GL2(Z) = {ordered bases of Z2}
= {changes of bases of Z2}
= {2× 2 matrices with determinant ±1}.

PGL2(Z) = {ordered bases of Z2 up to scaling by ±1} = GL2(Z)/{±I}.
SL2(Z) = {positively oriented ordered bases of Z2}

= {changes of bases of Z2 which preserve orientation}
= {M ∈ GL2(Z) : det(M) = 1}.

PSL2(Z) = SL2(Z)/{±I}.

The group PSL2(Z) contains the element T =

(
1 1
0 1

)
∼
(
−1 −1
0 −1

)
(this notation denotes that these two matrices are equivalent in PSL2(Z)),

and the element S =

(
0 −1
1 0

)
∼
(

0 1
−1 0

)
which correspond to a

shear and a ninety-degree rotation. (Note: we will say ‘contains the
matrix’, meaning, of course, that it contains an equivalence class rep-
resented by that matrix.)

The group PGL2(Z) contains the matrix U =

(
1 0
0 −1

)
∼
(
−1 0
0 1

)
,

which reverses the direction of one basis vector.
We can think of PSL2(Z) as a subgroup of PGL2(Z) because SL2(Z)

is a subgroup of GL2(Z). In particular, PSL2(Z) is the subgroup of
exactly those equivalence classes in PGL2(Z) which contain a matrix
representative of determinant 1. (However, note that if any one repre-
sentative has determinant 1, then so does the other representative.)

Theorem 40.1. PSL2(Z) is generated by S and T . PGL2(Z) is gen-
erated by S, T and U . Furthermore,

[PGL2(Z) : PSL2(Z)] = 2.

Proof. The fact that

[PGL2(Z) : PSL2(Z)] = 2

is actually easier than the statements about generation, for, PSL2(Z)
is the kernel of the determinant map.

det : PGL2(Z)→ {±1}, M 7→ det(M).
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which is a well-defined group homomorphism (this requires checking
that the det(M) is the same on both elements of an equivalence class,
but this check is easy). Once we know S, T and U generate PGL2(Z),
then one can check that PSL2(Z) is generated by T and S easily. For,
every element of PGL2(Z) can be expressed as a word in S, T and U
with exactly one instance of U at the beginning (this follows from the
identities SU = US and TU = UT−1). So PGL2 is a union of two
cosets: PSL2 and U · PSL2.

On to the topograph. It will suffice to show how each of S, T and
U act as changes of bases on the topograph. Consider the following
action of PGL2(Z) on ordered bases up to ±1:(

a b
c d

)
· (e1, e2) = (ae1 + ce2, be1 + de2).

First, I claim that this action can take any ordered basis to any other.
But this is clear, since every pair of ordered bases is a linear com-
bination in terms of any other, with coefficients forming a matrix of
determinant one.5

We will associate the data of an ordered basis up to ±1 to a path
through a superbasis. That is, if we specify a path by an arrow thus:

u

u− v

v

then the associated ordered basis is given by first the basis element
common to both edges in the path (u in the picture), then the other
basis element on the output edge (v in the picture). We must choose
signs on these lax vectors so that the third superbasis element consists
of u − v: if we change the sign of u, we must also change the sign of
v. Therefore it specifies an ordered basis up to ±1.

Then the actions of U , S and T are as follows:
U is a ‘reflection’:

5Note that my action is a little odd, perhaps a transpose of what you’d expect?
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u

u

u− v u+ v

v

u− v u+ v

v

S is a ‘rotation’:

u

u

u− v u+ v

v

u− v u+ v

v

T is a ‘translation’:

u

u

u− v u+ v

v

u− v u+ v

v

With these moves available to us, we see that we can traverse the
topograph to arrive at any other basis in the same component. For
example, T allows us to move along the shore of any region, and S
allows us to cross an edge to a new basin. U lets us change the direction
we’re facing along a shore. Because the topograph is connected, this
implies that S, T and U must be sufficient to arrive at any other ordered
basis. So they generate all of PGL2(Z).

�
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Remark. Note that there are actually at least two different ways to
imagine PGL2(Z) acting on the collection of ordered bases up to ±1.
You could write your basis in terms of the standard basis and use the
usual interpretation of a matrix as a transformation in terms of the
standard basis. That’s actually not what we’re doing here. If we use
that action, then it acts on the whole topograph, preserving adjacen-
cies. In our action in the proof above, adjacencies are not preserved;
this is an action that describes ‘walking around on the topograph.’
Note that if ‘walk forward and take the left fork’ on two edges adjacent
at their ‘tail,’ then the new edges we arrive at are no longer adjacent!
In other words, applying an element of PGL2(Z) (with the action of
the proof) to all three bases of a superbasis could result in three new
bases whose union is *not* a superbasis.

41. Equivalence of Quadratic Forms

Recapping what we’ve seen already in one convenient location:
If f : Z2 → Z is a quadratic form, then for each choice of ordered

basis e1, e2 for Z2, we can write down f as a polynomial in two variables:

f(xe1+ye2) = x2f(e1)+xy(f(e1+e2)−f(e1)−f(e2))+y2f(e2) = ax2+hxy+by2.

Any two forms obtained this way from the same function on Z2 are
called GL2(Z)-equivalent. Therefore, AX2 +BXY +CY 2 is equivalent
to ax2 + bxy+ cy2 if and only if there’s a change of basis Y = αx+βy,
Y = γx + δy taking one to the other. That is, plugging in the change
of variable for X and Y to the form AX2 + BXY + CY 2 gives us
ax2 + bxy + cy2.

Let us write

M =

(
α β
γ δ

)
.

Then, another way to say what we’ve just said is that

MT

(
A B/2
B/2 C

)
M =

(
a b/2
b/2 c

)
.

It is easy to see that equivalent forms represent the same integers.
One question we would like to answer is whether the converse is true.

It is also a consequence of the last section that equivalent quadratic
forms have the same discriminant. It is also easy to see the invariance
of the discriminant directly: ∆ is the determinant of the matrix of the
form. In the last equation, we are multiplying by M and MT , so the
determinant changes by det(M) det(MT ) = det(M)2 = 1.
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42. Reduction of Quadratic Forms

To compare whether two numbers are in the same equivalence class
modulo N , we reduce them both to residues in the window 0 ≤ x ≤ N
and see if we obtain the same residue. In other words, each equiva-
lence class modulo N has a ‘least positive’ representative. By reducing
any given number to that choice within its equivalence class, we can
compare equivalence classes.

To do the same thing with quadratic forms is called the ‘reduction of
quadratic forms’. We designate one representative of each equivalence
class of quadratic forms as ‘reduced’ and we develop an algorithm for
‘reducing’ to that choice.

To do this, we’ll use the group PGL2(Z), since these represent changes
of bases. Note that the change of basis given by

X 7→ −X, Y 7→ −Y
does not change a quadratic form aX2 + bXY + cY 2. Therefore, the
two matrices M = I,−I fix the form. That is why is makes sense to
use PGL2(Z) instead of GL2(Z).

We obtain an action of PGL2(Z) = 〈S, T, U〉 on the members of
one equivalence class of quadratic forms. By acting on a given form
with appropriate choices from PGL2(Z), we can ‘move’ around in the
equivalence class until we reach the reduced form.

We will restrict for the moment to positive definite quadratic forms.
Each element of PGL2(Z) acts on the coefficients of the form. We
summarise the actions of the generating elements in a table:

transformation element of where ax2 + bxy + cy2 usefulness or
PGL2(Z) goes, i.e. possible effect

(a, b, c) 7→ (a′, b′, c′)

X = y, Y = −x S (c,−b, a) make a ≤ c
X = x+ y, Y = y T (a, b+ 2a, a+ b+ c) make b smaller
X = x− y, Y = y T−1 (a, b− 2a, a− b+ c) until |b| ≤ a
X = x, Y = −y U (a,−b, c) change sign of b

By using these, we can alter our quadratic form bit by bit until
0 ≤ b ≤ a ≤ c. We call a quadratic form ax2 + bxy + cy2 satisfying
these inequalities on its coefficients reduced.

Warning: some authors use PSL2 instead of PGL2 and obtain a
different, slightly weaker meaning of ‘reduced.’

Proposition 42.1. There is exactly one reduced form in every equiv-
alence class of positive definite quadratic forms.
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Proof. I claim that the reduced form is the form obtained at the well in
the topograph. To be precise, we take the edge of the well surrounded
by the two smallest values of the quadratic form. Recall that an edge
surrounded by values a, b, a + b− h and a + b + h corresponds to the
four forms

ax2 ± hxy + by2, bx2 ± hxy + ay2.

Only one of these can be reduced. Recall that the well looks like this
for some a, b, c:

c

ab

2β

2γ

2α

where

2α = b+ c− a
2β = c+ a− b
2γ = a+ b− c

Suppose that a ≤ b ≤ c (these are different uses of a, b, c than in the
previous paragraphs). Then the edge 2γ corresponds to form

ax2 + 2γxy + by2.

Since 0 ≤ 2γ = a+ b− c ≤ a ≤ b, this form is reduced.
Now suppose we have found an edge which is a reduced form. Then

0 ≤ h ≤ a ≤ b in the picture
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a

b

a+ b− h

4a+ b− 2h

a+ 4b− 2h

h
2a− h

2b− h

so that by the climbing lemma, the well is to the right of this edge.
But in fact, 2a − h, 2b − h > 0, so the well is the vertex immediately
to the right. Furthermore, a+ b− h > a, b, so the edge is between the
two smallest values of the form. �

If a form is reduced, then b2 ≤ ac, so

−∆ = 4ac− b2 ≥ 3ac

which implies that a, b, c ≤ 1
3
|∆|. Therefore, there are only finitely

many reduced forms of a given discriminant. This implies there are
only finitely many equivalence classes of reduced forms for a given
discriminant. Question: just how many are there?

Example 42.2. Here’s an example of reducing a quadratic form. Con-
sider the form 5x2− 16xy+ 14y2. This has ∆ = 162− 4 · 5 · 14 = −24.

(5,−16, 14)
T−→ (5,−6, 3)

T−→ (5, 4, 2)
S−→ (2,−4, 5)

T−→ (2, 0, 3).

The result is reduced because 0 ≤ b ≤ a ≤ c. The reduced form is
2x2 + 3y2 with ∆ = 02− 4 · 2 · 3 = −24. (It’s always good to check that
the discriminant is invariant under your supposed reduction.)

A useful pattern for reducing efficiently is as follows: apply S when
a > c and then as many T ’s as needed to get |b| ≤ a, then repeat as
necessary. Finally, at the end apply U if you have a negative b.

We can view reduction as ‘moving around the topograph’ to find the
‘reduced’ form at the well.
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43. Algebraic Number Theory

For this I’m following Samuel, Chapter 2. So please refer to that.
I’ll just make a few extra comments here. He does things in somewhat
more generality, which will be useful to you later, and is no more work,
but our concern here is with number fields, i.e. finite extensions of Q.
Each such field K has a ring of integers, OK , i.e. the integral closure
of Z inside K. It is necessarily an integral domain (for example, it can
be embedded in C).

Samuel defines elements integral over a ring. But the two basic cases
to keep in mind are algebraic numbers, i.e. roots of polynomials in Q[x],
equivalently of monic polynomials in Q[x], equivalently roots of poly-
nomials in Z[x]; and algebraic integers, i.e. roots of monic polynomials
in Z[x].

Here’s a useful lemma that Samuel doesn’t explicitly do:

Proposition 43.1. If α is an algebraic number, then there is a rational
integer b such that bα is an algebraic integer.

Proof. Let f ∈ Q[x] be the minimal polynomial of α. Write

f(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0.

Let b be the smallest positive rational integer such that all bai ∈ Z.
Then bα is a root of

xn + ban−1x
n−1 + b2an−2x

n−2 + · · ·+ bn−1a1x+ bna0 ∈ Z[x].

Therefore bα is an algebraic integer. �

Example 43.2. If K = Q(i), we saw last time that the algebraic inte-
gers in K are exactly the Gaussian integers, Z[i].

44. Units in rings of integers

Write O∗K to denote the units in OK .

Proposition 44.1. α ∈ OK is a unit if and only if N(α) = ±1.

Proof. If α is a unit, then αβ = 1 for some β ∈ OK . So N(α)N(β) = 1.
Since α and its conjugates are integers and N(α) ∈ Q, we must have
N(α) ∈ Z, and similarly N(β) ∈ Z. Therefore, N(α) = N(β) ∈ {±1}.
Conversely, if N(α) = ±1, then

∏n
i=1 αi = ±1, so that α has as its

inverse the product of all other conjugates (possibly negated). But if
α ∈ OK , then so are all its conjugates and hence this product. So α is
a unit in OK . �
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45. Some Linear Algebra

The main adjustment I make to Samuel is to spend a bit more time
on the linear algebra. Let A ⊂ B be rings, with B a free A-module of
finite rank n. Then B has a basis bi over A, and any element α ∈ B
gives a map

x 7→ αx

which is a linear transformation on B. Therefore it has a matrix with
respect to the basis of B over A.

For example, if α is integral over A, and f(x) = xn + an−1x
n−1 +

· · · + a0 ∈ A[x] is an irreducible polynomial of which α is a root, then
B = A[α] has basis 1, α, α2, . . . , αn−1 and the matrix of α is

0 0 · · · −a0

1 0 · · · −a1

0 1 · · · −a2

...
...

. . .
...

0 0 · · · −an−1

 .

This matrix can be diagonalized if we extend scalars to some larger
ring C containing A.

Formally, we can do this with a tensor product. Replace B =
∑
Abi

with C ⊗A B =
∑
C(1 ⊗ bi). The elements of this ring are tensors,

i.e. pairs c ⊗ a where you think of c as the coefficient and a as the
vector; the basis is 1 ⊗ bi. The tensors are linear in each factor, and
have properties

c(d⊗ a) = cd⊗ a,
ac⊗ b = c⊗ ab for a ∈ A

Extending scalars to B itself, we find that α is an eigenvalue of the
matrix, since it satisfies its own characteristic polynomial.

In the case of a field extension, the characteristic polynomial is a
power of the minimal polynomial and the eigenvalues are the conjugates
of α, so the diagonalized matrix has σ1(α), σ2(α), . . . , σn(α) along the
diagonal.

46. Quadratic Fields

A number field K is called a quadratic field if it has [K : Q] = 2.
Let K = Q(α), where α is an algebraic number of degree 2. As a

root of a quadratic equation, α must be of the form a + b
√
D where

a, b ∈ Q, D ∈ Z. So K = Q(
√
D). In fact, we may replace D with its
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squarefree part, so that D becomes squarefree. All elements α of K
are of the form

α = a+ b
√
D

for some rational a and b. If D < 0, we call this field imaginary and if
D > 0, it is called real.

Since both roots of x2−D are in K, it is a Galois extension of Q, i.e.
the images of its two embeddings in an algebraically closed field are the
same, so it has two automorphisms. The automorphism group of K
consists of the identity and the map a+ b

√
D 7→ a− b

√
D. Therefore,

N(α) = (a+b
√
D)(a−b

√
D) = a2−Db2, tr(α) = a+b

√
D+a−b

√
D = 2a.

The goal of this section is to describe the ring of integers OK of K.

Proposition 46.1.

α = a+ b
√
D ∈ OK ⇐⇒ N(α), tr(α) ∈ Z.

Proof. Suppose that α = a+ b
√
D ∈ K. Then the minimal polynomial

of α is
x2 − tr(α)x+N(α).

But α ∈ OK if and only if this polynomial is in Z[x]. �

Proposition 46.2. If D ≡ 2, 3 (mod 4), then

OK = Z[
√
D] = Z+

√
DZ.

If D ≡ 1 (mod 4), then

OK = Z

[
1 +
√
D

2

]
= Z+

1 +
√
D

2
Z.

Proof. Let α = a+b
√
D. We know α ∈ OK if and only if 2a, a2−Db2 ∈

Z.
If α ∈ OK , then a ∈ 1

2
Z and so Db2 ∈ 1

4
Z, which implies b ∈ 1

2
Z also.

Therefore, all elements of OK are of the form

α =
A+B

√
D

2
, A,B ∈ Z

so we may restrict consideration only to α of this form. Then we have

α ∈ OK ⇐⇒ A2 −DB2 ≡ 0 (mod 4)

⇐⇒ A2 ≡ DB2 (mod 4)

The solutions of this congruence depend on D modulo 4. Since the
only squares modulo 4 are 0 and 1, we have

D ≡ 2, 3 (mod 4) =⇒ A ≡ B ≡ 0 (mod 2)
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and

D ≡ 1 (mod 4) =⇒ A ≡ B (mod 2).

In the former case, we conclude that

OK = {a+ b
√
D : a, b ∈ Z} = Z[

√
D].

In the latter case, we can express α in the form

α =
A+B

√
D

2
=
A−B

2
+B

1 +
√
D

2
.

Therefore,

OK = {a+ b
1 +
√
D

2
: a, b ∈ Z} = Z

[
1 +
√
D

2

]
.

�

What are the units of a quadratic field (i.e. units of its ring of
integers)?

Proposition 46.3. If D < 0 is squarefree, then

(1) If D = −1, O∗K = {1,−1, i,−i}.
(2) If D = 3, O∗K = {1,−1, ω,−ω, ω2,−ω2} for ω = 1+

√
−3

2
.

(3) Otherwise, O∗K = {1,−1}.

Proof. Let α ∈ OK . If D ≡ 2, 3 (mod 4), then write α = A + B
√
D,

while if D ≡ 1 (mod 4), write α = A+B
√
D

2
. Then the equation N(α) =

±1 becomes, respectively for the two cases,

A2 −DB2 = ±1, A2 −DB2 = ±4.

For −D > 1, the former has no solutions except A = ±1, B = 0. When
−D = 2 or −D > 3, the latter has no solutions except A = ±2.

If −D = 1, then the former also has solutions A = 0, B = ±1. If
−D = 3, then there are solutions

(A,B) = (±2, 0), (±1,±1)

These give the units of the statement. �

To study the units of a real quadratic field, we will use the theory of
continued fractions, later in the course.
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47. Different and Discriminant

A bilinear pairing
〈, 〉 : B ×B → A

is called non-singular or non-degenerate if there is no element b ∈ B
such that 〈b, B〉 = 0 (i.e. nothing that pairs to zero with everything).

Whenever you see a pairing, you should think of a dual space. Given
an A-module B, the dual space B∗ consists of all linear functionals on
B, i.e. linear maps B → A. Every element of b gives a linear functional
via the pairing:

〈b, ·〉 : B → A, x 7→ 〈b, x〉.
It would be nice if every linear functional arose in this manner. Unfor-
tunately, that doesn’t always happen.

We will be concerned in this section with a field extension L/K
where K is the field of fractions of some integral domain A. Then we
can define a pairing

〈x, y〉 = TrL/K(xy).

which makes L into a metric K-vector space. Since L is a field, for any x
there is a y so that xy = 1; hence the pairing is non-degenerate. In this
case, the Riesz Representation Theorem guarantees that every linear
functional in the dual space is realized as ‘pairing with an element,’ as
we hoped for above. Given a basis ei for L, there is a natural basis for
the dual space L∗, i.e. the linear functionals

fi :
∑

akek 7→ ai

which takes the value 1 on ei and 0 on the other basis vectors. There-
fore, by the Riesz Representation Theorem, there’s an element e∨i of L
such that

fi(`) = 〈e∨i , `〉.
Definition 47.1. A lattice Λ in L is a free A-module of rank n. The
dual lattice Λ∨ is defined by

Λ∨ = {α ∈ L : 〈α,Λ〉 ⊂ A}.
In particular, α ∈ Λ∨ if and only if 〈α, ei〉 ∈ A for the basis vectors

ei of Λ.

Example 47.2. Let Λ = Z[i]. Then a+ bi ∈ Q(i) is in the dual lattice
Λ∨ if and only if TrQ(i)/Q((a+ bi) · 1) ∈ Z and TrQ(i)/Q((a+ bi) · i) ∈ Z.
This happens if and only if 2a,−2b ∈ Z. Therefore,

Λ∨ =
1

2
Z+

i

2
Z =

1

2
Z[i].
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Proposition 47.3. Λ∨ is a free rank n A-module with basis e∨i .

Proof. Claim: The e∨i are independent. Proof of claim: Suppose
∑
kie
∨
i =

0. Then ki = 〈0, ei〉 = 0 for all i.
Claim: Λ∨ =

∑
Ae∨i . Proof of claim: From the first claim, we know

the e∨i form a basis for L. Write s =
∑
kie
∨
i , ki ∈ K. Then s ∈ Λ∨ if

and only if ki = 〈s, ei〉 ∈ A for all i. �

Proposition 47.4. Some properties of the dual:

(1) Λ∨∨ = Λ
(2) Λ1 ⊂ Λ2 ⇐⇒ Λ∨2 ⊂ Λ∨1
(3) (Λ1 + Λ2)∨ = Λ∨1 ∩ Λ∨2
(4) (Λ1 ∩ Λ2)∨ = Λ∨1 + Λ∨2
(5) (αΛ)∨ = 1

α
Λ∨ for α 6= 0 ∈ K

Proof. Exercise. �

48. The Discriminant and Dual of OK for Quadratic
Fields

Let K = Q(
√
d), d squarefree.

Theorem 48.1. (1) If d ≡ 2, 3 (mod 4), then ∆K = 4d and O∨K =
1

2
√
d
OK.

(2) If d ≡ 1 (mod 4), then ∆K = d and O∨K = 1√
d
OK.

Proof. Suppose d ≡ 2, 3 (mod 4). Then, as we have seen previously,

an integral basis is ω1 = 1, ω2 =
√
d, i.e. OK = Z+

√
dZ. Then

∆K = det(Tr(ωiωj)) =

∣∣∣∣2 0
0 2d

∣∣∣∣ = 4d.

To compute the dual, we find all elements a + b
√
d ∈ Q(

√
d) having

Tr(a+ b
√
d) = 2a ∈ Z and Tr(db+ a

√
d) = 2bd ∈ Z, i.e. 1

2
Z+ 1

2
√
d
Z =

1
2
√
d
OK . On the other hand, suppose d ≡ 1 (mod 4). Then an integral

basis is ω1 = 1, ω2 = 1+
√
d

2
. Then

∆K = det(Tr(ωiωj)) =

∣∣∣∣∣∣ Tr(1) Tr
(

1+
√
d

2

)
Tr
(

1+
√
d

2

)
Tr
(

1+d+2
√
d

4

)∣∣∣∣∣∣ =

∣∣∣∣ 2 −1
−1 1+d

2

∣∣∣∣ = d.

To compute the dual, we find all elements a + b
√
d ∈ Q(

√
d) having

Tr(a + b
√
d) = 2a ∈ Z and Tr((a + b

√
d)(1

2
+ 1

2

√
d)) = Tr(a+db

2
+

a+b
2

√
d) = a+ db ∈ Z, i.e. 1√

d
Z+ (1

2
+ 1

2
√
d
)Z = 1√

d
OK . �
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49. Relation between dual and discriminant

We expect a relation between the dual and discriminant, which is
easy to describe if we choose a basis ei for L over K and write the
pairing in terms of its Gram matrix,

G = (〈ei, ej〉) .
Then to pair any elements x and y in L, we write

〈x, y〉 = xTGy.

By definition, if M is the matrix whose columsn are some basis ui for a
lattice Λ, and M∨ is the matrix whose columns are the dual basis u∨i ,
then

MTGM∨ = I.

If we write this in terms of the basis ei = ui, this simplifies, and we
discover that

M∨ = G−1.

To change the basis of L (respectively Λ) we are using to write the
matrices involves a matrix B of determinant a unit in L (respectively
A) and the following transformation:

M ′ = BM, M ′∨ = BM∨, G′ = BTGB.

So if we restrict to bases of Λ, then detG is determined free of basis
up to the square of a unit in A. Further (detM∨)−1 is determined up
to a unit, and they are equal up to a unit.

Conversely, if detG = detG′ for two bases of L, then it must be the
case that detB = ±1, and therefore the two bases generate the same
A-module in L. From this we discover that

Proposition 49.1. Any two bases of L over K have the same discrim-
inant up to the square of a unit if and only if they generate the same
lattice in L.

Thus it makes sense to talk about the discriminant of the ring of
integers OK of a number field K by taking detG for a basis of OK as
a Z-module. We often call this the discriminant of K or the absolute
discriminant of K.

50. Computing Discriminants

The Gram matrix of the trace pairing can be diagonalized, provided
we extend scalars. In particular, if σ1, . . . , σn are the embeddings of
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L fixing K, and if we extend scalars to some algebraically closed field,
then we can write

(σi(xj)) (σj(xk))
T =

(∑
j

σj(xixk)

)
= (Tr(xixk)) .

In other words, we diagonalize by changing basis from the standard
basis in terms of x1, . . . , xn to

σ1(x1)
σ2(x1)
...

σn(x1)

 ,


σ1(x2)
σ2(x2)
...

σn(x2)

 , . . . ,


σ1(xn)
σ2(xn)
...

σn(xn)

 .

The pairing’s Gram matrix becomes In.
For example, the Gram matrix for Z[i] was(

2 0
0 −2

)
Our change of basis matrix is (

1 1
i −i

)
And the relation above becomes(

1 1
i −i

)T (
1 0
0 1

)(
1 1
i −i

)
=

(
2 0
0 −2

)
Or, in other words, the Gram matrix in terms of the new ‘σ-basis’ is:(

1 1
i −i

)−T (
2 0
0 −2

)(
1 1
i −i

)−1

=

(
1 0
0 1

)
.

Remark. Samuel uses a lemma of Dedekind on independence of
embeddings to show that the Trace pairing is non-degenerate and so
the Discriminant is non-zero. In our case (a field extension of the field
of fractions of an integral domain), we have already seen this. He’s
working in more generality, where the trace pairing may not always be
non-degenerate (can you come up with an example?).

At this point go back to Samuel for the remainder of Chapter 2.

51. But wait, so what’s this ‘Different’, anyway?

For this we need to define invertible fractional ideals; it’s the inverse
of the dual of the ring of integers. More on this soon.
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52. Factorisation of Ideals in Rings of Integers

Samuel; we did Chapters 2,3, and 1.4

53. Prime Ideals in Quadratic Fields

We’d like to essentially list the prime ideals of a quadratic field.
First, it is not hard to show that the prime ideals of Z are exactly (p)
where p ∈ Z is prime. (We never count the whole ring, i.e. unit ideal,

as a prime ideal.) Now, instead consider K = Q(
√
d). If P ∈ OK is a

prime ideal, then we have seen that there is some a ∈ P , 0 6= a ∈ Z,
so that (a) ⊂ P . Since ‘to contain is to divide,’ we just need to factor
all ideals of the form (a) for non-zero integers a in order to find all
primes P . Of course, we can do a little better: a itself has a prime
factorisation,

a =
∏
i

pi

in Z which gives a corresponding equation for ideals:

(a) =
∏
i

(pi).

Of course, this may not be a prime factorisation in OK , as perhaps the
(pi) factor further. But we have now reduced the question to finding
all the prime ideal factors of ideals of the form (p) where p ∈ Z.

As an example, recall that we’ve already essentially done this for the
Gaussian integers. For primes in Z, we know how they factor in the
UFD Z[i]:

p ≡ 1 (mod 4) p = (a+ bi)(a− bi)
p ≡ 3 (mod 4) p is prime
p = 2 p = (1 + i)(1− i)

where 1 + i and 1 − i are associates, while a + bi and a − bi are not.
These give rise to prime factorisations:

p ≡ 1 (mod 4) (p) = (a+ bi)(a− bi)
p ≡ 3 (mod 4) (p) is prime
p = 2 (p) = (1 + i)2

It turns out that these three possible types of factorisation already
demonstrate the possibilities.

Proposition 53.1. Let K be a quadratic number field. Let p be a
rational prime (i.e. prime in Z). Then the ideal (p) in OK factors in
one of the following three ways:

(1) (p) is prime;
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(2) (p) = P1P2 where P1 6= P2 are distinct prime ideals;
(3) (p) = P 2 where P is a prime ideal.

Proof. We know the norm of (p):

N((p)) = N(p) = p2

Note that N(I) = 1 if and only if OK/I is trivial if and only if I = OK .
Since the norm is multiplicative on ideals, and prime ideals have norm
N(P ) > 1, it must be that (p) has at most two factors. �

We are ready to classify the factorisation of all ideals (p), where p is
odd.

Theorem 53.2. Let K = Q(
√
d) where d is squarefree. Then the

following hold:

(1) If p - ∆K, and
(
d
p

)
= 1, then (p) = P1P2 where P1 6= P2 are

prime.

(2) If p - ∆K, and
(
d
p

)
= −1, then (p) is prime.

(3) If p | ∆k, then (p) = P 2 where P is prime.

Proof. First, suppose that p - ∆K , and
(
d
p

)
= 1. Then let a ∈ Z be

such that a2 ≡ d (mod p). Then

(p, a+
√
d)(p, a−

√
d) = (p2, p(a+

√
d), p(a−

√
d), a2−d) = (p)(p, a+

√
d, a−

√
d,
a2 − d
p

)

Note that a2−d
p

is an integer because of our choice of a. Now, the right

hand ideal contains p and 2a, which are necessarily coprime, since p - d
(this is a consequence of p - ∆K). Hence the right hand ideal is the
unit ideal, (1) = OK . Therefore,

(p, a+
√
d)(p, a−

√
d) = (p)

We now need to check that these two ideals are proper and are not
equal; by the previous proposition this suffices. But note that they
are conjugates, meaning, conjugating all elements in one ideal gives all
elements in the other ideal. Hence if one is the unit ideal, the other
is; then their product would not be (p). Hence they are proper ideals.
If they were equal, then they would both contain p and 2a, and would
again be the unit ideal. So they are different.

Second, suppose p - ∆K . There is an element α ∈ OK such that

α2 = d. (For,
√
d ∈ OK .) Let’s suppose P is a prime ideal dividing

(p). Suppose N(P ) = p. Then we have maps

OK → OK/(p)→ OK/P → Z/pZ
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The last of these maps is an isomorphism, since N(P ) = p, and there’s
only one right of size p. Integers a ∈ Z ⊂ OK must map under this
sequence of maps to a mod p. The element α must map to something,
call it φ(α). But since α2 = d in OK , it must be that

φ(α)2 ≡ d (mod p)

in Z/pZ. This implies
(
d
p

)
= 1. So whenever (p) is not prime,

(
d
p

)
= 1;

the contrapositive gives case two.
Finally, suppose p | ∆k. Then p | d (since p is odd). So we have

(p,
√
d)2 = (p2, p

√
d, d) = (p)(p,

√
d, d/p) = (p)OK = (p)

because d/p and p are coprime integers (a consequence of the fact that
d is squarefree). �

Hence, we have classified the primes for Q(
√
d) in the case that d is

odd, except for those primes that are factors of (2). We have:

(1) (p) whenever p - ∆K and
(
d
p

)
= −1

(2) (p, a±
√
d) whenever p - ∆K and d ≡ a2 (mod p)

(3) (p,
√
d) when p | ∆K

We also have a result for the prime p = 2:

Theorem 53.3.
If 2 - ∆K, and d ≡ 1 (mod 8), then (2) = P1P2 where P1 6= P2 are
prime.
If 2 - ∆K, and d ≡ 5 (mod 8), then (2) is prime.
If 2 | ∆k, then (2) = P 2 where P is a prime.

54. The Correspondence between Ideals and Quadratic
Forms

Let K = Q(
√
−d) be a quadratic field of discriminant ∆ and suppose

d > 0 (so it is an imaginary quadratic field). Define two sets:

I = {equivalence classes of ideals of OK},

Q =
{

proper equivalence classes of primitive positive
definite quadratic forms of discriminant ∆

}
.

First we need a definition.

Definition 54.1. For any ideal I ⊂ OK ⊂ C, an integral basis α, β
for I is called admissible if Im(β

α
) > 0. (Note that this depends on a

choice of embedding OK ⊂ C.)
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Our goal is to show that the two sets I and Q are in bijection. We’ll
define a function

Q : I → Q
as follows. Let I be a representative of an equivalence class [I] ∈ I,
and let α, β be an admissible integral basis for I. Then

Q([I]) =

[
N(αx+ βy)

N(I)

]
.

where the right hand side is a quadratic form in variables x, y. We can
also define

I : Q → I
as follows. Let f = ax2 + bxy + cy2 be a representative of a proper
equivalence class [f ] ∈ Q. Then

I([f ]) =

[(
a,
b+
√

∆

2

)]
.

We’ll need to show that these two functions are well-defined and sup-
ply a bijection between I and Q. But first let’s look at our continuing
example from the midterm:

Example 54.2. Let K = Q(
√
−5) with ring of integers OK = Z[

√
−5]

and discriminant ∆ = −20. (Note that −5 ≡ 3 (mod 4)).
Then the ideal (2, 1 +

√
−5) has integral basis 2, 1 +

√
−5 and so

maps to

N(2x+ y(1 +
√
−5))

N(I)
=

1

2
((2x+ y)2 + 5y2) = 2x2 + 2xy + 3y2,

and this quadratic form yields the ideal (2, 1 +
√
−5). (Of course, we

can’t always expect to get back the same ideal, but in general one which
is equivalent.)

A principal ideal (γ) can be taken to have integral basis γ, γ
√
−5, so

it maps to

N(γ(x+ y
√
−5))

N(γ)
= N(x+ y

√
−5) = x2 + 5y2.

This quadratic form maps to the ideal (1,
√
−5) = (1), which is equiv-

alent to any principal ideal.

Lemma 54.3. If α, β and α′, β′ are both admissible integral bases for
I, then there exists M with det(M) = 1 such that(

α
β

)
= M

(
α′

β′

)
.
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Proof. First note that

β

α
=
βα

αα
=

βα

N(α)
.

The denominator of the right-hand quantity is positive, hence a basis
α, β is admissible if and only if Im(βα) > 0.

We can write M =

(
a b
c d

)
, so that

α = aα′ + bβ′, β = cα′ + dβ′.

And we have Im(βα) > 0 and Im(β′α′) > 0.

βα = (cα′ + dβ′)(aα′ + bβ′)

= acN(α′) + adβ′α′ + cbα′β′ + bdN(β′)

Since it is only the imaginary part we are concerned with, we can sub-
tract various real parts (norms and traces) and we are left to consider

(ad− bc)(β′α′)
By the assumption that both bases are admissible, we find that ad −
bc > 0. Since they are both bases, ad− bc = 1. �

Proposition 54.4. Q is well-defined on ideal classes in I.

Proof. Let α′, β′ and γ′, δ′ be two admissible integral bases of I and
I ′, where I ∼ I ′.

Then there are some θ, φ ∈ OK such that

(φ)I = (θ)I ′.

So we can write

α = φα′, β = φβ′,

which is an integral basis of (φ)I; and

γ = θγ′, δ = θδ′,

which is an integral basis of (θ)I.
These two bases are related by a change-of-basis matrix M ∈ SL2(Z)

(by the lemma, since they are both admissible). In fact, this implies
that if we write

xα + yβ = Xγ + Y δ

then (
γ δ

)(X
Y

)
=
(
α β

)
M

(
X
Y

)
=
(
α β

)(x
y

)
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so that the two quadratic forms

N(αx+ βy)

N(φ)N(I)
and

N(γX + δY )

N(θ)N(I ′)

are related by a linear transformation of determinant 1, taking (x, y) to
(X, Y ). Therefore the choice of ideal within an equivalence class and
the choice of admissible basis does not alter the proper equivalence
class of the resulting quadratic form.

�

Proposition 54.5. I is well-defined on proper equivalence classes in
Q.

Proof. Let ax2 + bxy + cy2 be a representative of a proper equivalence
class of forms. We will denote forms by a triple of their coefficients.
Then

I([(a, b, c)]) =

(
a,
b+
√

∆

2

)
.

We will apply S, T ∈ SL2(Z) to f and verify that the ideal class ob-
tained is the same. First T :

I([T (a, b, c)]) = I([(a, b+2a, a+b+c)]) =

(
a, a+

b+
√

∆

2

)
=

(
a,
b+
√

∆

2

)
.

Now S, which is more difficult. We have

I([S(a, b, c)]) = I([(c,−b, a)]) =

(
c,
−b+

√
∆

2

)
.

Note that since ∆ = b2 − 4ac,(
b+
√

∆

2

)(
−b+

√
∆

2

)
= ac

Therefore,

(c)

(
a,
b+
√

∆

2

)
=

(
ac, c

b+
√

∆

2

)
and (

b+
√

∆

2

)(
c,
−b+

√
∆

2

)
=

(
c
b+
√

∆

2
, ac

)
So the resulting ideals are equivalent. �

Proposition 54.6. Let I ⊂ OK be an ideal. Then

∆I = N(I)2∆K .
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Proof. Let α, β be an integral basis for the ideal I, and let θ, φ be an
integral basis for OK . Then these bases are related by a change-of-basis
matrix M . By the same proof we saw in homework for principal ideals,
det(M) = N(I). Then, by a property of determinants which we’ve
seen earlier,

∆I = N(I)2∆K .

�

Proposition 54.7. If [I] ∈ I, and [f ] ∈ Q, then

(1) Q([I]) ∈ Q,
(2) I([f ]) ∈ I.

Proof. For the first part, let α and β represent the conjugates of α and
β. Then

N(αx+ βy) = (αx+ βy)(αx+ βy)

= N(α)x2 + Tr(αβ)xy +N(β)y2

This has discriminant

Tr(αβ)− 4N(α)N(β) = (αβ + αβ)2 − 4ααββ = (αβ − αβ)2.

On the other hand,

∆I = Tr(α2)Tr(β2)− Tr(αβ)2

= (α2 + α2)(β2 + β
2
)− (αβ + αβ)2

= (αβ − αβ)2

Therefore,
N(αx+ βy)

N(I)

has discriminant
∆I/N(I)2 = ∆.

For the second part, begin with a form ax2 +bxy+cy2. Then a ∈ OK
since Z ⊂ OK , and b−∆

2
∈ OK because

(1) if 4 | ∆, then OK = Z[
√

∆/4]; whereas

(2) if 4 - ∆, then OK = Z[1+
√

∆
2

].

So (
a,
b−∆

2

)
is an ideal of OK . �

Theorem 54.8. The two sets I and Q are in bijection under Q and
I.
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Proof. We will show that Q ◦ I and I ◦ Q are the identity maps on
Q and I, respectively. Let α, β be an admissible integral basis for I.
Then

Q([I]) =
1

N(I)

(
N(α)x2 + Tr(αβ)xy +N(β)y2

)
.

Applying I, we obtainN(α)

N(I)
,

Tr(αβ)
N(I)

+
√

∆

2

 .

Our task is to show thatN(α)

N(I)
,

Tr(αβ)
N(I)

+
√

∆

2

 ∼ (α, β).

Let 1, θ be an integral basis for OK , where θ =
√
d or 1+

√
d

2
as

appropriate (depending on d modulo 4). Then write X2 : OK → Z for
the map which takes α to its second coordinate in terms of the basis
1, θ.

Claim: N(I) = X2(αβ) Proof of Claim: Write

α = α1 + α2θ, β = β1 + β2θ, αi, βi ∈ Z.
Then

N(I) = |α1β2 − α2β1| = |X2(αβ)|
But by admissibility, Im(αβ) > 0, so that X2(αβ) > 0. End proof of
claim.

So we have

(X2(αβ))

N(α)

N(I)
,

Tr(αβ)
N(I)

+
√

∆

2

 =

(
N(α),

T r(αβ) +X2(αβ)
√

∆

2

)
.

Now, if ∆ = −4d, then X2(·) = Im(·)/
√
d. If ∆ = −d, then X2(·) =

2 Im(·)/
√
d. In either case, the second generator of the ideal above

becomes
Tr(αβ) + 2 Im(αβ)

2
= αβ.

So the ideal above becomes (αα, αβ) ∼ (α, β).
Fortunately, the other direction is easier. Begin with a form ax2 +

bxy + cy2. This gives an ideal

I =

(
a,
b+
√

∆

2

)
.
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In turn, this gives a form

1

N(I)

(
a2x2 + Tr

(
a
b−
√

∆

2

)
xy + acy2

)
,

because
b+
√

∆

2
· b−

√
∆

2
=
b2 −∆

4
= ac.

We also have

N(I) = X2(a(b+
√

∆)/2) = a

so that this form is actually

ax2 + bxy + cy2

as required. �

55. Diophantine Approximation

Theorem 55.1 (Dirichlet’s Theorem). For all α ∈ R, and 1 < Q ∈ R,
there exist p, q ∈ Z such that 0 < q < Q and∣∣∣∣α− p

q

∣∣∣∣ ≤ 1

qQ
.

Proof. First, suppose that Q is an integer. Then Q ≥ 2. Consider the
Q+ 1 real numbers

0, 1, {α}, {2α}, . . . , {(Q− 1)α}.
Divide the line segment [0, 1] into Q disjoint segments of length 1/Q
in the obvious way. Then at least one of these segments must contain
two numbers from the list above. Since Q ≥ 2, 0 and 1 are not in the
same segment. So there are two cases:

First, we may have {r1α} and {r2α} in the same segment, with
r1 < r2. Then there exist s1, s2 ∈ Z with

|(r1α− s1)− (r2α− s2)| ≤ 1

Q
.

On the other hand, we may have 0 or 1 together with {rα} in a segment.
In this case, there exists an s ∈ Z with

|rα− s| < 1

Q
.

In either case, we are done.
Now suppose that Q is not an integer. Then just take the smallest

integer Q0 ≥ Q. Since q < Q0, then q < Q (since q ∈ Z). �
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Note that we can replace ≤ with < if α is irrational. In fact, the
only time we will get ≤ is if two extreme endpoints of the interval are
used, i.e. α is rational with denominator Q.

Corollary 55.2. Let α be a real number. Then α is irrational if and
only if there exist infinitely many rational numbers p/q ∈ Q such that

0 <

∣∣∣∣α− p

q

∣∣∣∣ < 1

q2

Proof. Choose any Q1 and apply Dirichlet to obtain a p1/q1 ∈ Q such
that ∣∣∣∣α− p1

q1

∣∣∣∣ ≤ 1

q1Q1

≤ 1

q2
1

Then choose Q2 such that ∣∣∣∣α− p1

q1

∣∣∣∣ > 1

q1Q2

.

Apply Dirichlet’s theorem again with this Q2. Etc. etc.
However, if α is rational, say α = r

s
, then for any p/q ∈ Q with q > s,∣∣∣∣pq − r

s

∣∣∣∣ ≥ 1

qs
>

1

q2

So there are only finitely many rational approximations to a rational
number.

�

This characterises irrationality! So it is possible to prove a number
is irrational in this way. Do you remember Liouville’s number, which
we showed was transcendental? It was∑

k

1

10k!

You could show this is irrational using this theorem. Similar methods
can be used to show that ζ(3) is irrational (Apery, 1978).

Theorem 55.3 (Liouville’s Theorem). Let α ∈ R be an algebraic num-
ber of degree d > 1. Then for all ε > 0, there are only finitely many
p, q ∈ Z such that ∣∣∣∣α− p

q

∣∣∣∣ ≤ 1

qd+ε

Proof. Let f(x) ∈ Q[x] be the minimal polynomial of α. Multiplying
up to remove denominators, α is a root of some

g(x) = adx
d + · · ·+ a0 ∈ Z[x]
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Then ∣∣∣∣g(pq
)∣∣∣∣ =

1

qd
∣∣adpd + · · ·+ a0q

d
∣∣ ≥ 1

qd
.

since g(x) has no rational roots, and hence adp
d+· · ·+a0q

d is a non-zero
rational integer.

Now apply the mean value theorem:

g(α)− g
(
p

q

)
=

(
α− p

q

)
g′(β)

for some β in the interval [α, p
q
].

Since g(α) = 0 but g′(β) 6= 0 (since left side of the last equation
doesn’t vanish), we get∣∣∣∣α− p

q

∣∣∣∣ =

∣∣∣g (pq)∣∣∣
|g′(β)| ≥

1

|g′(β)|qd >
1

Mqd

for some constant M independent of p and q (the fact that solutions

p, q to the inequality of the theorem satisfy
∣∣∣α− p

q

∣∣∣ < 1 means β ∈
[α− 1, α+ 1], wherein g′ has some maximum). Any potential solution
to the inequality of the theorem having large enough q so that qε > M
is ruled out by this last inequality; hence there are only finitely many
solutions. �

Note that the proof gives a bound to the size of solutions!
Since Liouville’s theorem (1844), there has been gradual progress in

improving the result, i.e. giving smaller exponents on q under the same
hypotheses.

Liouville (1844): exponent d
Thue (1909): exponent d

2
+ 1

Siegel (1921): exponent 2
√
d

Gelfand/Dyson (1947): exponent
√

2d
Roth (1955): exponent 2

Roth’s result, that for every algebraic number α and for every ε > 0,
we have only finitely many solutions p, q ∈ Z to∣∣∣∣α− p

q

∣∣∣∣ ≤ 1

q2+ε

earned him the Field’s Medal, and has wide-ranging number theoretical
consequences. Compare it to Dirichlet’s Corollary that α is rational
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(i.e. algebraic of degree 1) if and only if∣∣∣∣α− p

q

∣∣∣∣ ≤ 1

q2

has only finitely many solutions.
In other words, algebraic numbers are poorly approximable, but ra-

tionals are even more poorly approximable.
Note: both Dirichlet’s Corollary and Liouville’s proof rely funda-

mentally on the fact that if some polynomial vanishes at α, but not
at p/q, then its value at p/q is bounded below somehow (using the
fact that integers are discretely separated). In the case of Dirichlet the
polynomial is just linear. This fundamental idea is at root of Roth’s
proof, too.

Liouville’s Theorem implies that Liouville’s number is transcenden-
tal. We saw this before, but now it’s a quick consequence:

Theorem 55.4. The number

z =
∞∑
n=1

1

10i!

is transcendental.

Proof. Let d, t be integers. Let p/q be the partial sum

p/q =
d+t∑
i=1

1

10i!

Then the denominator q = 10(d+t)!. We have∣∣∣∣α− p

q

∣∣∣∣ =
1

10(d+t+1)!

(
1 +

1

10d+t+2
+ · · ·

)
<

2

10(d+t+1)!
<

2

qd+t+1
<

1

qd+t
.

This works for all t, hence we find infinitely many ‘good approxima-
tions’ for any d. �

56. Continued Fractions

Given a real number α > 0, if it is > 1, then subtract 1 and if it
is < 1, then invert it. This process expresses any α as a continued
fraction:

α = a0 +
1

a1 + 1
a2+ 1

a3+···

In other words, given α we obtain a well-defined sequence of integers
an: a0 is defined as the integer part of α, and then a1 is the integer
part of (α− a0)−1 etc.



MATHEMATICS 6110, FALL 2013 INTRODUCTORY NUMBER THEORY119

Every real number has a continued fraction expansion. A few famous
continued fraction expansions are:

e = 2 +
1

1 + 1
2+ 1

1+ 1

1+ 1

4+ 1

1+ 1

1+ 1
6+···

which has the pattern 2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, . . ., and

π = 3 +
1

7 + 1
15+ 1

1+ 1

292+ 1

1+ 1

1+ 1

1+ 1
2+···

which has no discernable pattern. Chopping off the fraction at any
finite point, we obtain a rational approximations to α. Are these good
in the sense of Dirichlet’s Theorem? That’s our question for now.

The processes of subtracting 1 and inverting can be codified with
matrices. Think of a fraction as a vector with numerator and denom-
inator as its entries. Two vectors which are scalar multiples of each
other represent the same fraction. Thus, we think of such vectors as
‘equivalent’ and write (

r
s

)
∼ a

(
r
s

)
The space of all vectors in R2 modulo this equivalence is called real

projective space, P1(R). The matrices in GL2(R), i.e. those with deter-
minant ±1, act on P1(R).

For example, the action of subtracting one from a number, i.e.

r/s 7→ r/s− 1,

can be codified in this language as multiplication by a matrix:(
r
s

)
7→
(

1 1
0 1

)(
r
s

)
=

(
r + s
s

)
.

Notice that if we use a different, but equivalent, vector to represent
r/s, we get an equivalent answer:(

r
s

)
7→
(

1 1
0 1

)(
r/s
1

)
=

(
r/s+ 1

1

)
.

Inverting a number, i.e.

r/s 7→ 1/(r/s) = s/r,
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can also be codified as multiplication by a matrix:(
r
s

)
7→
(

0 1
1 0

)(
r
s

)
=

(
s
r

)
.

Since matrices which are multiples of one another act the same way
on equivalence classes of vectors, we can think of this as an action of
PGL2(R).

Given α > 0, write pn/qn for the continued fraction of α truncated
after n steps, i.e. if α has continued fraction expansion

α = a0 +
1

a1 + 1
a2+ 1

a3+···

which we will henceforth write in a more compact notation as [a0; a1, a2, a3, a4, . . .],
then

pn/qn = a0 +
1

a1 + 1
a2+ 1

. . .+ 1
an

In particular, p0/q0 = a0 and p1/q1 = a0 + 1/a1.

Definition 56.1. The quantity pn/qn is called the n-th approximant
or convergent of α and an is called the n-th partial quotient of α.

If we start with ∞ =

(
1
0

)
, we can invert and add an to get an,

then invert and add an−1 to get an−1 + 1
an

and so on, building up the

continued fraction from below to obtain pn/qn once we finally reach a0.

We could even start with 0 =

(
0
1

)
, which, when inverted and adding

an gives us∞. Then, continuing, we build up pn−1/qn−1 (since an went
missing).

In other words, in the matrix notation above,(
a0 1
1 0

)(
a1 1
1 0

)(
a2 1
1 0

)(
a3 1
1 0

)
· · ·
(
an 1
1 0

)
=

(
pn pn−1

qn qn−1

)
We obtain recurrence relations

pn+1 = an+1pn + pn−1, qn+1 = an+1qn + qn−1,

meaning the ps and qs are very easy to compute from the an.
Considering determinants, we find that for n > 1,

pnqn−1 − pn−1qn = (−1)n+1.

This implies pn and pn+1 are relatively prime, as are qn and qn+1.
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As a consequence,

pn
qn
− pn−1

qn−1

=
(−1)n+1

qnqn−1

So we obtain an alternating series whose partial sums are pn/qn:

pn
qn

= a0 +
n∑
i=1

(−1)i+1

qiqi−1

.

Do we have a limit

lim
n→∞

pn
qn

?

If α > 0, then the an ≥ 0. If α is such that the an are strictly positive,
then the qn are growing as n→∞, by the recurrence relations. By the
alternating series test, then, the limit exists.

Now, given a0, a1 etc.,

α = [a0, a1, . . . , an−1, αn]

where αn is not necessarily rational, but is chosen so that this finite
continued fraction is equal to α. In other words,

αn = [an, an+1, . . .].

Note that an is the integer part of αn. In particular, an ≤ αn < an + 1.
Then, from the recurrence relations above,

α = [a0, a1, . . . , an−1, αn] =
αnpn−1 + pn−2

αnqn−1 + qn−2

Lemma 56.2. Suppose a, b, c, d > 0. If a
b
< c

d
, then a

b
< a+c

b+d
< c

d
.

Proof. The hypothesis guarantees that ad < bc. Multiply up denomi-
nators to compare three integers, and use this inequality. �

From the lemma, then, α lies between pn−1

qn−1
and pn−2

qn−2
. This may be

shown for all n. Hence, by the convergence of the alternating series,
α = limn→∞

pn
qn

.

Assuming that the an are positive, then from a property of the partial
sums of an alternating series, we have the following arrangement of the
convergents:
p0

q0

<
p2

q2

< · · · < p2n

q2n

< · · · < α < · · · < p2m+1

q2m+1

< · · · < p5

q5

<
p3

q3

<
p1

q1

.

Furthermore, also a property of alternating series,∣∣∣∣α− pn
qn

∣∣∣∣ < 1

qnqn+1

<
1

q2
n

.
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So, the pn
qn

form a sequence of infinitely many good approximations of

α, and by Dirichlet’s Corollary, α is irrational.
On the other hand, if an = 0 at some point, our continued fraction

expansion terminates and clearly α is rational.
We have shown

Theorem 56.3. A real number α > 0 is irrational if and only if its
continued fraction expansion is infinite. Furthermore, the partial quo-
tients pn

qn
are all ‘good approximations’ in the sense of Dirichlet.

Of course, this leaves us with the question – are these all the good
approximations? Or the best ones in some sense?

57. Pell’s Equation

Pell’s Equation (erroneously attributed to Pell by Euler; it should
be Brouncker’s equation), is the following, for d not a square:

x2 − dy2 = ±1

From the theory of quadratic fields, we see that this is the equation
N(x + y

√
d) = ±1, i.e. the solutions give all units x + y

√
d in Q(

√
d)

for d ≡ 2, 3 (mod 4). The equation has only finitely many solutions for
negative d. But for positive d, it may have many more. In this section
we’ll use continued fractions to describe the solutions. We will assume
throughout that d is positive and not a square.

A solution to the Pell equation must satisfy

1 =
∣∣x2 − dy2

∣∣ =
∣∣∣x−√dy∣∣∣ ∣∣∣x+

√
dy
∣∣∣

so that ∣∣∣∣xy −√d
∣∣∣∣ < 1

y2

∣∣∣xy +
√
d
∣∣∣ < 1

2y2

The final inequality follows since∣∣∣∣xy +
√
d

∣∣∣∣ =

√
d± 1

y2
+
√
d > 2.

This shows that x
y

is a convergent to
√
d, in fact it is a pn/qn for some

n.
This gives the basic relationship; we need to ask now, is every con-

vergent to
√
d a solution? Not necessarily, but we can use continued

fractions to provide a general solution anyway. There are close ties to
the units in the ring of integers of a real quadratic field.
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58. Elliptic Curves

In what follows, I’ll largely be simply expanding in these notes on
Lectures on Elliptic Curves by J.W.S Cassels (LMS Student Texts).

An elliptic curve E over a field K is a non-singular plane curve
defined by an equation of the form

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

where ai ∈ K. Henceforth we will assume that most of these coefficients
are zero and write instead

E : y2 = x3 + ax+ b

where a, b ∈ K. (Unless we are in characteristic p = 2, 3, one can
always perform a change of variables to obtain this simpler form.) The
equation is called a Weierstrass equation. To check that it is non-
singular is to check that the quantity

∆ = −16(4a3 + 27b2)

is non-zero. This is the discriminant of the curve. The quantity 4a3 +
27b2 is the discriminant of the cubic polynomial on the right; we’ve
adjusted it by a factor of −16.

The K-rational points of E are the points (x, y) ∈ K satisfying the
equation of E. The points of an elliptic curve form a group under the
following group law:

To add P1 and P2, draw a straight line through P1 and P2. This
will intersect the curve at three points. Call the third P ′. Then draw
a vertical line through P ′. This will intersect the curve at two points.
Call the second P1 + P2; that is the sum.

This sounds a little strange, but actually the group law can be char-
acterised by the following fact: any line will intersect the curve at
three points (over the algebraic closure). These three points sum to
the identity.

To see that one always obtains three points, we need to count cor-
rectly, and that means considering the curve as a curve in the projective
plane P2. Let K be a field.

P2(K) = {[X, Y, Z] : X, Y, Z ∈ K not all zero}/ ∼
where ∼ denotes the following equivalence relation:

[X, Y, Z] ∼ [X ′, Y ′, Z ′] ⇐⇒ ∃a 6= 0s.t.X = aX ′, Y = aY ′, Z = aZ ′.

We can identify [X, Y, Z] with the line along the vector (X, Y, Z) in K3.
In this way, P2(K) becomes the collection of lines through the origin
in K3.
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We now rewrite the Weierstrass equation by homogenizing:

ZY 2 = X3 + aZ2X + bZ3

This can now be considered an equation in P2, since any two points
under the equivalence ∼ either both satisfy or neither satisfy the equa-
tion. The K-points of the usual equation (called affine) are points of
the new one under the embedding

(x, y) 7→ [x, y, 1].

The homogeneous equation has a single additional point, which is

[0, 1, 0]

and we call this the point at infinity. There are no other additional
points, since if the third coordinate is non-zero, it is of the form [x, y, 1]
and if the third coordinate is zero, then the equation dictates that the
first coordinate is zero.

Now suppose we intersect the equation with a line, say αX + βY +
γZ = 0. If γ is non-zero, then solving for Z and substituting, we
obtain a degree 3 homogeneous equation in two variables X and Y ,
with coefficient 1 on X3. Since X and Y are in proportion, we can
divide through by Y 3, so that X3 + · · · + zY 3 has solutions X = x0Y
where x0 is a root of X3 + · · ·+ z. Thus, as a projective equation, this
has exactly three solutions over an algebraically closed field, counted
with multiplicity. Note that a vertical line (one having β = 0) intersects
the line at infinity (the line Z = 0) at the one point at infinity.

If two of these points are defined over a field K, then the third is
also, since in this case the polynomial factors over that field.

If γ = 0, then solve for Y instead for the same conclusion. If both
β and γ are zero, then the line is X = 0, which intersects the curve at
the solutions to ZY 2 = bZ3, i.e. [0, 1, 0], [0,±

√
b, 1].

Finally, it’s possible we want to add the same point to itself. But
that’s just using multiplicities; the line goes through one point with
multiplicity two, i.e. it is tangent.

Thus we have shown that whenever two K-rational points are chosen,
their sum is well-defined and is a K-rational point.

Theorem 58.1. The K-rational points of E, denoted E(K), form an
abelian group.

Proof. The product is well-defined and again in E(K).
The group law is clearly abelian.
It has a zero, which is the [0, 1, 0], since the line through any point

P and [0, 1, 0] is vertical. To see this, consider αX + βY + γZ = 0;
if [0, 1, 0] is on this line, then β = 0. Hence the line is of the form
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αX+γZ = 0. If α 6= 0, this represents a vertical line (verify by setting
Z = 1). If α = 0, then γ 6= 0 and this is the line at infinity we discussed
before. Thus the group law produces P + [0, 1, 0] = P .

It has inverses: any two points on a vertical line are inverses, using
the group law and the fact that every vertical line passes through the
identity. (Draw a picture.)

What remains is associativity. This is rather tedious to do with the
equations, but it is possible. I’ll give a sketch of a geometric proof
which should give some intuition, but it lacks details. First, we draw
a diagram of 9 points and the horizontal and vertical lines passing
through them:

It is actually constructed piece by piece as follows: locate P , Q and
R, and draw a line through P and Q and through Q and R. Then
these lines pass through P ∗Q and Q ∗R reppectively. Here ∗ denotes
simply the third point of the cubic on that line, not the addition law.
The addition law is actually: P +Q = (P ∗Q)∗∞. Locate the point∞
and draw the lines through P ∗Q and∞ and Q∗R and∞ respectively;
then P + Q and Q + R reside on these lines, so locate those. Finally,
draw the lines through P and Q + R and through R and P + Q. If
their intersection point is actually on E, then we will have proved

P ∗ (Q+R) = (P +Q) ∗R

which suffices to show associativity.
Notice that the three vertical lines form a cubic C1 and the three

horizontal lines form a cubic C2 (it is not an irreducible cubic, but
three lines do form a cubic). There are 9 points of intersection, 8 of
which we know are on E. So we only need to show that if E goes
through 8 points on two different cubics, then it goes through their 9th
point of intersection.

To see this, notice first that 10 coefficients determine a cubic:

x3, y3, xy2, x2y, x2, y2, xy, x, y, 1.

Of course scaling doesn’t change the cubic, but we’re parametrizing
equations. Those that pass through 8 distinct points satisfy 8 condi-
tions, so they form a 2-dimensional family (you have to be convinced
the 8 conditions are independent; this is true if the points are in ‘gen-
eral position’, i.e. no more collinear than we have constructed them to
be, which is the case so long as the lines are all distinct; details omitted
as actually you need to do some special cases separately). So if we have
two independent elements of this family (C1 and C2 are not the same
cubic so their equations are not scalar multiples), then any other in the
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family (in our case E) is a linear combination of these two. So it also
passes through their 9th point of intersection. �

So we have a group!
The arithemtic study of elliptic curves is largely centred on and mo-

tivated by the question: which groups can you get?
Here’s a famous starting point:

Theorem 58.2 (Mordell). The group E(K) is a finitely generated
abelian group.

Therefore the group has the form

Zr × Z/N1Z× · · ·Z/N`Z.

That is, it consists of a free abelian part of rank r, and a torsion part.
The torsion part is fairly well tamed over Q, since we know the following
theorem.

Theorem 58.3 (Mazur). Let E be an elliptic curve defined over Q.
Then the torsion part of E(Q) is one of the following groups:

Z/nZ, n = 1, 2, . . . , 10, 12, Z/2Z× Z/2nZ, n = 1, 2, 3, 4.

Similar precise results are known for some small number fields, and
it is known that there is a finite list for each number field.

However, we have no idea what ranks are possible. Ranks up to size
28 have been discovered, but it is a major open question to determine
if they are bounded.

The Singular Case

A point on the Weierstrass equation F (X, Y, Z) = 0 is a singular
point if and only if the partials ∂F

∂X
, ∂F
∂Y

, ∂F
∂Z

all vanish at that point.
Write the Weierstrass equation as

Y 2Z = G(X,Z)

If there is a singular point P = [X0, Y0, 1], then

2Y0 = 0,
dG

dx
(X0, 1) = 0

which means that Y0 = 0 and X0 is a repeated root of G(X, 1). This
gives the discriminant condition,

4A3 − 27B2 = 0.

There are two possibilities:
First, A = B = 0. The cuspidal cubic

ZY 2 = X3.
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A line not passing through the origin can be written

αX + βY + γZ = 0

where γ 6= 0, so by scaling we may assume γ = 1. Then, intersecting
with the cubic, we obtain

(αX + βY )Y 2 +X3 = 0

This has three roots. Write the points of intersection as

[X1, Y1, Z1], [X2, Y2, Z2], [X3, Y3, Z3].

Note that Yi are not zero (line not through the origin), so if we prefer,
we can use Yi = 1. Then we have that the Xi are roots of the cubic

(αX + β) = −X3.

Since this has zero X2 coefficient, we obtain

X1 +X2 +X3 = 0.

Therefore we can identify the non-singular points with the additive
group of the field, under the same geometric group law as before.

Second case. This case we leave as an exercise, but the end result
is as follows: the non-singular points form a group isomorphic to the
multiplicative group of the field.

Reduction of Elliptic Curves

If you recall, we learned that for degree 2 homogeneous equations,
there are solutions over Q if and only if there are solutions over Qp for
all primes p and over R (the Hasse-Minkowski Theorem). This is part
of the local-global principal. So, not surprisingly, one of the main tools
in the study of elliptic curves is to look ‘locally.’

Consider E, an elliptic curve over Q. We can consider the same curve
over Qp since Q embeds in Qp. Then we can reduce modulo p, using
the reduction map

Zp → Fp.

To be precise, any point in P2(Qp) with rational coordinates can be
written with integer coordinates where the valuations of at least one
coordinate is zero. (Restricting to Q coordinates, we could use rational
integer coordinates with gcd 1). Applying the reduction map to these
coordinates, we obtain a map

P2(Qp)→ P2(Fp).

Any curve (including lines) in P2 which has coefficients which are inte-
gers with at least one of zero valuation, can be reduced this way also.
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For that reason, we will assume our elliptic curve has integer coeffi-
cients in Weierstrass form. (If it does not, we can change coordinates,
but this adds a layer of complication we’ll just ignore for now.) If we
are given a line, we can multiply by a constant to obtain an equation
in the required form.

For example, the elliptic curve

y2 = x3 + 8

becomes the curve

y2 = x3 + 2

modulo 3, and the point (1, 3) on the curve becomes (1, 0). If P lies on
a curve C, then the reduction P lies on the reduced curve C. So the
reduction map gives rise to a reduction of the curves

C(Qp)→ C(Fp).

Proposition 58.4. The non-singular points of C are all in the image
of this map.

Proof. Let P0 ∈ C be non-singular. Then

∂F

∂X
(P0) 6= 0

where F (X, Y, Z) = 0 is the equation of C. Write P0 = [X0, Y0, Z0],
where X0, Y0, Z0 ∈ Fp. Lift these coordinates to any X, Y, Z ∈ Zp.
Note that F (X, Y, Z) does not necessarily vanish. Let

G(T ) = F (T, Y, Z).

Then dG
dT

(X) 6≡ 0 (mod p), while G(X) ≡ 0 (mod p). So we may apply
Hensel’s lemma to find a lift X ′ of X0 for which F (X ′, Y, Z) = G(X ′) =
0. �

Lemma 58.5. Let L be a line and C be a cubic. Suppose that L meets
C in the three points P,Q,R, counted with multiplicities. Then either

(1) L is entirely contained in C; or
(2) L meets C at P , Q, R, counted with multiplicities.

Proof. Write L as

αX + βY + γZ = 0

Write C as

F (X, Y, Z) = 0
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where not all coefficients vanish modulo p in either equation. Assume
without loss of generality that γ does not vanish mod p. Solve for Z
in the line and substitute into F , obtaining some

G(X, Y ) = F (X, Y,−α/γX − β/γY ) = 0

If this equation is 0 = 0 modulo p, then L is contained in C. So let us
assume not. In any case, G(X, Y ) has the form

λ(pyX − pxY )(qyX − qxY )(ryX − rxY ) = 0

where P = [px, py, pz], Q = [qx, qy, qz], R = [rx, ry, rz]. However, these
points do not have both of their first two coordinates vanishing modulo
p, and λ does not vanish mod p (as otherwise G would vanish). Then
we may reduce this equation and we obtain another of degree three:
P , Q and R are the three points on the intersection of L and C. �

Definition 58.6.

E0(Qp) = {P ∈ E(Qp) : P is non-singular}.
Theorem 58.7. E0(Qp) is a subgroup of E(Qp). The reduction induces
a homomorphism E0(Qp)→ E(Fp) of groups.

Proof. Reduction takes lines to lines. E0 fails to be a group if it is not
closed under addition or inverses. But this would entail a line two of
whose points are in E0 and one which is not. This would then give
a line in P2(Fp) which intersects E at two non-singular points and at
the singular point. Such lines don’t exist (the node or cusp is always a
multiplicity two intersection). So E0 is a subgroup. From the previous
lemma and the definition of the group law, P +Q = P + Q. So the
map is a homomorphism. �

Thus we obtain homomorphisms:

E0(Q)→ E0(Qp)→ E(Fp)

This motivates our study of elliptic curves over the p-adics and over
finite fields.

Elliptic curves over the p-adics

Let us suppose that we are studying an elliptic curve

y2 = x3 + ax+ b

where a, b ∈ Zp. If a, b ∈ Qp only, then there is a change of coordinates
x 7→ u2x, y 7→ u3y which can fix the problem. We can transfer the
information obtained here through the change of coordinates later. So
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for now let’s stick with the simple case. But keep in mind that reduction
modulo p depends on the particular equation.

The reduced curve over Fp doesn’t contain a line, even though it may
be singular (i.e. the homogenized equation can’t have a linear factor).

We write

E0(Fp) = {P ∈ E(Fp) : P is non-singular}.
This lets us also write

E0(Qp) = {P ∈ E(Qp) : P ∈ E0(Fp)}.
The map

E0(Qp)→ E0(Fp)

is a surjective group homomorphism, as we saw earlier. We will now
study its kernel, which is the collection of points of E(Qp) whose re-
duction modulo p is the point at infinity.

Proposition 58.8. The kernel is

K := {[0, 1, 0]} ∪ {[X, Y, 1] : X, Y /∈ Zp}.
Proof. Suppose [X, Y, Z] is in the kernel, but Z 6= 0. Then, multiplying
up the coordinates of [X, Y, Z] so that they are in Zp, we obtain X and
Z of positive valuation, Y of zero valuation, and Z 6= 0. The claim is
that:

vp(X) < vp(Z)

The Weierstrass equation gives ZY 2 = X3 + aXZ2 + bZ3, where we
are assuming vp(a), vp(b) ≥ 0. Since vP (Y ) = 0, we find that

vp(Z) ≥ min{3vp(X), vp(a) + vp(X) + 2vp(Z), vp(b) + 3vp(Z)}
≥ min{vp(X) + 1, 3vp(Z)}.

The claim follows from this and the fact that vp(Z) > 0. Therefore,
dividing by the pvp(Z), we obtain the form in the statement. �

Now suppose that [X, Y, 1] is in the kernel K, so that vp(X), vp(Y ) <
0. Then

2vp(Y ) = 3vp(X)

since of the three terms on the right in the Weierstrass equation, X3

must have smallest valuation. So, we can write

vp(Y ) = −3n, vp(X) = −2n

where n ∈ Z≥0. Call n the level of the point. Something not in the
kernel is defined to have level 0. The level of [0, 1, 0] is defined to be
∞.
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The important fact is that the kernel of this reduction is all points
of level n ≥ 1.

Let N ≥ 1. Let’s change coordinates:

XN = p2NX, YN = p3NY, ZN = Z.

The Weierstrass equation becomes a new curve:

E(N) : Y 2
NZN = X3

N + p4aXNZ
2
N + p6bZ3

N .

Now, if we reduce modulo p in this new situation, we get

E(N) : Y 2
NZN = X3

N .

(Note that in class I fixed my conflict of notation between EN and E(N)

differently. Upon reflection, I like this fix better.)
A point (X, Y ) changes to a point (p2NX, p3NY ) which

(1) reduces to the singular point of E(N) if level(X, Y ) < N .

(2) maps to the identity of E(N) (is in the kernel) if level(X, Y ) >
N .

But E(N) is that cuspidal cubic we saw earlier; the non-singular points
form an additive group.

Define for N ≥ 1,

EN(Qp) := {P ∈ E(Qp) : level(P ) ≥ N}.
Lemma 58.9. We have containments

E(Qp) ⊃ E0(Qp) ⊃ E1(Qp) ⊃ E2(Qp) ⊃ · · · .
This is called the p-adic filtration. We have for N ≥ 1,

EN(Qp)/EN+1(Qp) ∼= Z/pZ.

And

E0(Qp)/E1(Qp) ∼= E0(Fp).

i.e. the group of non-singular points on E.

Proof. Containment is clear.
The group

EN(Qp)/EN+1(Qp)

is the non-singular points of E(N) (the same as those which reduce

to non-singular points on E(N)), modulo the kernel of reduction. Since
reduction is a homomorphism of groups, and the image is surjective, we

find that this group is exactly E(N)
0(Fp), which we saw in the cuspidal

reduction case, is isomorphic to the additive group of the field, i.e.
Z/pZ.
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By the same argument, the last displayed equation in the statement
holds, but here we don’t know that E is cuspidal; in fact, it could be
various different things. So we can’t say more.

�

Corollary 58.10. Let P ∈ E(Qp) be of finite order m > 1, where m
and p are coprime. Then P = [x, y, 1] where x, y ∈ Zp.
Proof. If not, then P is of some level N ≥ 1. Then P ∈ EN(Qp) but
P /∈ EN+1(Qp). So it maps to a non-zero element of EN(Qp)/EN+1(Qp),
which must have order p, so p | m. �

Plan: improve this so doesn’t depend on N and p being coprime.
Note that what this theorem says, in another language, is this:

If P has level N , then so does mP . But if mP is the identity, this
can’t be so (since the identity has infinite level). Contradiction.

But we have to improve the proof for the case that p | m. In this
case, the level of P will rise. We have to determine how much it rises,
and show that it does not rise to ∞ to reach the same contradiction.

So look closer at the homomorphism above

φ : EN(Qp)/EN+1(Qp)→ Z/pZ.

This is done by first changing coordinates, and then using our analysis
of the cuspidal cubic. The map φ looks in practice like the following:

[x, y, 1] 7→ [p2Nx, p3Ny, 1] = [p−Nx/y, 1, p−3N/y] 7→ p−Nx/y.

If [x, y, 1] is of level N , then x/y is coprime to p.
So, if we define u([x, y, 1]) = x/y for [x, y, 1] of all levels, and u([0, 1, 0]) =

0, then x/y is coprime to p and vp(u(P )) = level(P ).

Lemma 58.11. Let P1, P2 ∈ E1(Qp).

vp(u(P1 + P2)− u(P1)− u(P2)) ≥ 5 min{vp(u(P1)), vp(u(P2))}.
Proof. First, suppose one of P1 = [x, y, 1], P2, P1 + P2 is the identity.
In the first two cases, the relation reduces to a trivially true statement.
(Note, the valuation of 0 is infinity.) In the third case, note that u(P ) =
−u(−P ) since the inverse of [x, y, 1] is [x,−y, 1].

Without loss of generality, let’s assume

vp(u(P1)) ≤ vp(u(P2)).

Let N ≥ 1 be the level of P1 (which is the smaller of the two levels).
Then

vp(x) = −3N, vp(y) = −2N.

Let’s consider EN as above. Since P1 and P2 do not map to the singu-
larity, neither does −P1−P2 (the third point on the line joining them),
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so the line doesn’t pass through [0, 0, 1], and hence has non-zero coef-
ficient on ZN :

ZN = αZN + βYN .

Plugging [x, y, 1] into the line, we find that, looking at valuations,

vp(α) ≥ 0, vp(β) ≥ 0.

Now we’ll intersect with E:

0 = −Y 2
N(αXN+βYN)+X3

N+p4NaXN(αXN+βYN)2+p6Nb(αXN+βYN)3

Simplifying

0 = c3X
3
N + c2X

2
NYN + c1XNY

2
N + c0Y

3
N

where

c3 = 1 + p4Naα2 + p6Nbβ3,

c2 = 2p4Nαβa+ 3p6Nα2βb.

Therefore,
vp(c3) = 0, vp(c2) ≥ 4N.

The roots of this equation are, by construction,

XN/YN = −p−Nu(P1 + P2), p−Nu(P1), p−Nu(P2).

The sum of these roots must be −c2/c3 from the equation, and we are
done. �

As a consequence, u has a sort of linearity:

Lemma 58.12. Let P ∈ E1(Qp), s ∈ Z>0.

vp(u(sP )) = vp(s) + vp(u(P ))

Proof. One can prove from the previous lemma by induction that for
integers s > 0,

vp(u(sP )− su(P )) ≥ 5vp(u(P ))

The three quantities

u(sP )− su(P ), u(sP ), su(P )

are three sides of a triangle, i.e. their valuations are two smaller and
equal, one potentially larger. If p - s, so that vp(su(P )) = vp(u(P )),
then it must be (because of the inequality above) that u(sP )− su(P )
is the largest, so

vp(u(sP )) = vp(u(P )).

The same holds if s = p, since then vp(su(P )) = vp(u(P )) + 1.
Now induct on the power of p dividing s using the statement of the

lemma, pulling out one power at a time. �
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Theorem 58.13. The group E1(Qp) is torsion free. In other words,
torsion is injective under reduction.

Proof. Suppose P ∈ E1(Qp) has order m and level N . Then mP = 0,
so

∞ = vp(u(0)) = vp(m) + vp(u(P )) = vp(m) +N.

which is a contradiction. �

Corollary 58.14. Suppose that p 6= 2, and vp(4a
3 + 27b2) = 0. Then

the torsion subgroup of E(Qp) is isomorphic to a subgroup of E(Fp).

Proof. By the discriminant condition, E(Qp) = E0(Qp), so

E(Fp) = E(Qp)/E1(Qp).

But the quotient includes none of the torsion. �

Now we return to E being a curve over Q, with coefficients in Z.
Our work is going to pay off to tell us about the torsion points on the
elliptic curve.

Theorem 58.15 (Nagell-Lutz). The torsion part of E(Q) is finite. A
non-identity point P = [x, y, 1] ∈ E(Q) of finite order satisfies x, y ∈ Z
and either y = 0 or y2 | (4a3 + 27b2).

Proof. By the injection E(Q) 7→ E(Qp), we find x, y ∈ Zp for all p, so
that

x, y ∈ Z.
Now suppose p is prime, but p 6= 2 and p - 4a3 +27b2. Then the torsion
group of E(Q) is isomorphic to a subgroup of E(Fp). So it is finite. (In
a given situation, one could look modulo p for various p to restrict the
torsion group.) If 2P = 0, then P = −P , so y = 0.

Otherwise, write 2P = [x2, y2, 1]. We have established that x2, y2 ∈
Z. Now one needs to work out the doubling formula and then some
manipulations then show y2 | 4a3 + 27b2. Here is the sketch:

The doubling formula tells us x2 in terms of x and y:

x2 + 2x =
(3x2 + a)2

4(x3 + ax+ b)

Since the left side is an integer, looking modulo x3 + ax+ b, we have

(3x2 + a)2 ≡ 0

But at the same time, it is a simple calculation that

(3x2 + 4a)(3x2 + a)2 ≡ 4a3 + 27b2
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Since y2 = x3 + ax+ b, we discover that

y2 | 4a3 − 27b2.

�

Now we have a tool to compute the torsion on an elliptic curve!
One way to bound it: look modulo p for various p. To exhaustively
enumerate it: use the theorem.

A bit about Finite Fields

Recall these statements from earlier in the course:

Lemma 58.16. (previously Lemma 27.1) Let f(x) ∈ k[x], where k is
a field, and suppose that f(x) is not identically zero. Let n = deg f(x).
Then f has at most n distinct roots in k.

Corollary 58.17. Let f(x), g(x) ∈ k[x], where k is a field. Suppose
that n = deg f(x) = deg g(x). If f(αi) = g(αi) for n+ 1 distinct values

α1, α2, . . . , αn+1,

then f(x) = g(x).

Proposition 58.18.

xp−1 − 1 ≡ (x− 1)(x− 2) · · · (x− (p− 1)) (mod p)

We can update this. Consider a finite field Fq of q elements (we don’t
assume anything about q yet, although we’ll discover shortly that it is
a power of a prime). Since it is a field, F∗q has q−1 elements. By group

theory, then xq−1 = 1 for all such elements. Also 0q = 0, so every
element of the field satisfies xq = x.

Proposition 58.19. Let Fq be a finite field of q elements. Then

xq − x =
∏
α∈Fq

(x− α).

Proof. Let f(x) = xq−x−∏α∈Fq
(x−α). Then deg f(x) < q since the

leading terms cancel. But it has q distinct roots in Fq (all elements).
So f(x) must be identically zero, by Lemma 27.1. �

Corollary 58.20. Suppose that L is a field extension of Fq. Then
α ∈ L is an element of Fq if and only if αq = α.

Here’s another proposition from before:

Proposition 58.21. If d | p − 1, then xd ≡ 1 (mod p) has exactly d
solutions.
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Here’s the updated version we’ll prove:

Proposition 58.22. Let k be an y field. Then xd − 1 | xn − 1 in k[x]
if and only if d | n. Similarly, for a nonzero integer a, ad − 1 | an − 1
if and only if d | n.

Proof. Let n = dd′+r (division algorithm!), where 0 ≤ r < d. If r = 0,
then

g(x) =
xn − 1

xd − 1
=

(xd)d
′ − 1

xd − 1
= (xd)d

′−1 + (xd)d
′−2 + · · ·+ xd + 1

and
xn − 1 = (xd − 1)g(x).

In general,

xn − 1

xd − 1
=

(xd)d
′ − 1

xd − 1
+ xdd

′ xr − 1

xd − 1
= g(x) + xdd

′ xr − 1

xd − 1

is a polynomial if and only if xr−1
xd−1

is; i.e. if and only if r = 0.
The second statement has the exact same proof. �

Proposition 58.23. Let Fq be a finite field of q elements. If d | q− 1,
then xd = 1 has exactly d solutions in Fq.

Proof. If xd − 1 had fewer than d roots, then by the divisibility just
witnessed, and Lemma 58.16, xq−1 − 1 would have fewer than q − 1
roots. But it has as roots all elements of F∗q, i.e. it has q− 1 roots. By
this contradiction, we have proven the proposition. �

Finally, we showed before that:

Theorem 58.24. (Z/pZ)∗ is cyclic.

We can update the proof to see that

Theorem 58.25. Let Fq be a finite field of q elements. Then F∗q is
cyclic.

Proof. In any finite commutative group G, there exists y ∈ G whose
order is the least common multiple of the orders of all the elements of
G. In particular, if n is the order of y, then xn = 1 for all x ∈ G.

So all elements of F∗q are roots of xn−1, but 0 is not, so it has exactly
q − 1 roots in Fq.

But xn − 1 has at most n roots in Fq (by Lemma 27.1).
So

q − 1 ≤ n.

On the other hand, 1, y, y2, . . . , yn−1 are all distinct, by the fact that
y has order n. Therefore, xn − 1 has at least n roots in Fq, so
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q − 1 ≥ n.

Hence n = q − 1 and

F∗q = {1, y, y2, . . . , yn−1} = 〈y〉.
�

The rest of this section is new, not a repeat of Z/pZ.

Lemma 58.26. Let Fq be a finite field of q elements. Then there is
exactly one ring homomorphism6 Z→ Fq, and its image is isomorphic
to Z/pZ for some prime p.

Proof. Any such ring homomorphism is forced to take the identity to
the identity, so the map must be n 7→ ne where e is the identity of Fq.
The image is a finite subring of Fq, which must be an integral domain.
Hence the kernel is a prime ideal. �

In this case, the field must have characteristic p, i.e. px = p(ex) =
(pe)x = 0x = 0 for all x ∈ Fq.
Corollary 58.27. Any finite field of size p is isomorphic to Z/pZ.

We write Fp for this field.

Theorem 58.28. The number of elements in a finite field is a power
of its characteristic.

Proof. The field Fq has subfield Fp. Then in particular it is a finite
dimensional vector space over Fp. It must therefore have size pn where
n is the dimension. �

Proposition 58.29. Let k be a field of characteristic p. Then

(x+ y)p
d

= xp
d

+ yp
d

, x, y ∈ Fq
for all d ∈ Z>0. This implies that the map

x 7→ xp
d

is a ring homomorphism on any field of characteristic p.

Proof. For d = 1, this is an application of binomial theorem; all the
terms besides the first and last have coefficient divisible by p.

For higher d = 2, just repeat, etc. etc.
The ring homomorphism property that wasn’t immediate is the one

we checked (that is respects addition). �

6of commutative rings with identity, don’t forget we’re number theorists
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Theorem 58.30. The subfields of a finite field Fq of size q = pn, are in
one-to-one correspondence with the divisors of n, where for each divisor
d of n, we have a subfield of size pd.

Proof. Each subfield is a vector space over Fp and so has size pd for
some d. We will show that d | n. Call this subfield E. Then E∗ is of

size pd−1 and xp
d−1−1 is the polynomial over Fp having roots exactly

all elements of E∗. Since this is true for Fq also, we have

xp
d−1 − 1 | xpn−1 − 1.

Therefore d | n.
Conversely, suppose that d | n. Define E to be the subset of Fq

consisting of elements fixed by the pd Frobenius:

E = {x ∈ F : xp
d

= x}.
The Frobenius is a ring homomorphism by a recent lemma, so the
elements fixed by it form a field (just check; being fixed is closed under
the various properties, including inverses). We’re not done, though,
because we need to discover that E actually has pd elements (if d - n,
this fails).

Since d | n, we have pd−1 | pn−1, so xp
d−1−1 | xpn−1−1. So xp

d−x
has exactly pd roots (and not fewer), but these roots are exactly E, by
definition.

Now, if E ′ is another subfield having the same size, then its elements
also satisfy the same polynomial xp

d − x which has as roots a unique
subset of the elements of F , so it is exactly E. �

Corollary 58.31. There is at most one finite field of size q = pd, up
to isomorphism.

Proof. We already did the case d = 1.
Now suppose d > 1. Then the pd elements all satisfy xp

d − x and
in particular all roots of this polynomial are in the field. We call a
minimal field over Fp in which a polynomial has all its roots a splitting
field. In fact, the splitting field is unique, up to isomorphism, which
shows finite fields of each size are unique up to isomorphism.

Here’s a proof that splitting fields are unique up to isomorphism.
First, assume g(x) is an irreducible factor, of degree greater than 1 (if
the polynomial is linear, the base field is its splitting field). Adjoining
one root of g(x) results in a field isomorphic to

F [x]/(g(x)).

Now over this field, by induction, the splitting field of the polynomial is
a unique extension, up to isomorphism. Does starting with a different
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irreducible factor matter? No: any other splitting field of our original
polynomial must contain a field isomorphic to F [x]/(g(x)) and hence
is isomorphic to the splitting field thus obtained. �

Proposition 58.32. Write Fd(x) to be the product of the finitely many
monic irreducible polynomials in Fp[x] of degree d. Then

xp
n − x =

∏
d|n

Fd(x).

Proof. First, xp
n−x is squarefree, since if it were of the form f(x)2g(x),

then

−1 = 2f(x)f ′(x)g(x) + f(x)2g′(x)

which would imply f(x) | −1.
Now we show that all monic irreducible factors of xp

n−x are exactly
those of degree dividing n.

Claim 1: Let f(x) be a monic irreducible polynomial divid-
ing xp

n − x. Then d = deg f divides n. Let α be a root of f .
Then Fp(α) is a vector space of dimension d over Fp and hence has pd

elements, the roots of xp
d − x. So α is a root of a factor of xp

n − x,
and hence α is fixed by the pn-Frobenius. As Frobenius is a ring ho-
momorphism fixing Fp, every element of Fp(α) must be fixed by it. So
all elements of Fp(α) satisfy xp

n − x, and so

xp
d−1 − 1 | xpn−1 − 1

and therefore pd − 1 | pn − 1 so d | n.
Claim 2: Let f(x) be a monic irreducible polynomial such

that d = deg f | n. Then f(x) | xpn − x. Any root α is fixed by

pd-Frobenius, so α is a root of xp
d − x so

f(x) | xpd − x | xpn − x.
�

Corollary 58.33. The field Fq(α), where α is a root of a monic irre-
ducible f(x) ∈ Fq[x], is of size qn where n is the degree of f , and it is
the splitting field of f(x).

Proof. We found that f(x) | xpd − x, but the latter factors completely
into linear factors in Fq(α). �

Let

Nd = #{monic irreducible polynomials of degree d}.
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Corollary 58.34.

pn =
∑
d|n

dNd

and by Mobius inversion

Nd =
1

n

∑
d|n

µ
(n
d

)
pd.

In particular, the number is at least one in each case, since it is a
sum of distinct powers of p with coefficients ±1. This shows that

Theorem 58.35. There exists a finite field of q = pn elements for all
primes p and positive integers n.

Elliptic Curves over Finite Fields

There’s a simple bound for the size of E(Fp): there are p possible x
coordinates, each of which may have 2 possible y coordinates, plus the
point at infinity: 2p+ 1.

In fact, what is known is that

Theorem 58.36 (Hasse Theorem).

|#E(Fp)− p− 1| ≤ 2
√
p.

The quantity in brackets is called ap, the trace of Frobenius. Knowing
the traces of Frobenius determine the curve and its arithmetic infor-
mation in several different ways, and collecting information about their
behaviour (as p varies) is one of the main avenues of research.

59. Rough Notes of Cryptography Stuff

We’ll get to that, but it’s Friday before break, so first a quick detour
to elliptic curve factoring and elliptic curve cryptography.

Factoring:
Let n ≥ 2 be composite we want to factor.
First, check that gcd(n, 6) = 1, and n isn’t a perfect power (try

taking roots and finding small factors first).
Choose random 1 < b, x1, y1 < n.
Let c = y2

1 − x3
1 − bx1 modulo n. Then P = (x1, y1) must be on the

curve

y2 = x3 + bx+ c

considered modulo n.
Check that gcd(∆, n) = 1 (It might give us a factor! But if it is n,

go back and choose a different b.)
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Choose k a product of small primes to smallish powers, e.g. k is the
lcm of the first K integers.

Compute kP performing computations modulo n. If this fails be-
cause something isn’t invertible, we found a factor of n. As a rational,
it will always have the form ak

d2K
, bk
d3k

), but when we’re working mod n,

the addition law breaking is the same as gcd(dk, n) > 1.
Compute gcd(dk, n). If we find a factor of n, yaya. If the gcd is 1,

go back and pick a larger k, or choose a new curve. If it is n, decrease
k.

Double and add to compute kP efficiently.
Why does it work? Suppose p | n. If E(Fp) (which has point P on

it) has size dividing k, then the order of P divides k. So computing
kP will give the point at infinity, and dk vanishes modulo p.

Diffie Hellman Key Exchange
Agree on Fq, E/Fq, P ∈ E. Alice: aP. Bob bP.
ElGamal
aree on suff. Alice: aP as usual.
Bob’s message M ∈ E, random integer k, compute

B1 = kP, B2 = M + kA

These B’s are ciphertext. Alice computes B2 − aB1 = M .

B2 − aB1 = M + kA− akP = M + kaP − akP = M.

ECDSA (digital signature)
Agree as usual, N is order of p, Alice aP.
document: d mod N, and random integer k mod N. Alic computes

kP, signature is

(s1, s2) = (x(kP ) (mod N), (d+ as1)k−1 (mod N))

Note: choose integer representative of x(kP) that is between 0 and p-1.
Bob verifies using alice’s public A. Compute

v1 = ds−1
1 (mod N), v2 = s1s

−1
2 (mod N).

Then compute
v1P + v2A

this ought to have x coordinate s1 modulo N .
CHeck:

v1P + v2A = ds−1
2 P + s1s

−1
2 aP = (s−1

2 (d+ as1))P = kP

General group methods for ECDLP or any DLP.
Baby-Step-Giant-Step (Shanks)
Q = kP, find k
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Let m = ceiling of
√
N .

compute P, 2P, . . . , mP
compute R = -mP
compute Q+R, Q+2R, Q+3R, . . . , Q + mR
match? iP = Q + jR; Q = iP + jmP.
Why must there be a match? Write k = jm+ i Then 0 ≤ i < m and

j = m−i
N

is also i nthat range.

60. Elliptic Curves over Finite Fields

We haven’t got enough background to properly do this section jus-
tice, so we will provide only a sketch of further ideas.

Theorem 60.1 (Hasse). Let E be an elliptic curve defined over Fq, a
finite field of q elements. Then

|#E(Fq)− q − 1| ≤ 2
√
q.

Proof. The proof relies on the automorphisms of finite fields. In par-
ticular, the automorphisms of extensions of Fq are generated by the
Frobenius automorphism,

φ(x) = xq

This automorphism has the property of ‘picking out’ elements of Fq
inside larger extensions, i.e. x ∈ Fq is actually in Fq if and only if
φ(x) = x. This is a little like the way complex conjugation picks out if
a complex number is actually a real number.

This is an automorphism of the curve also, and it does the same
work for us: a point in Fq is actually in Fq if and only if it is fixed by
the Frobenius map on E:

φ([x, y, 1]) = [xq, yq, 1].

Therefore, the Fq points of E are exactly the kernel of 1 − φ. It
remains to show that these are all multiplicity one, and to compute the
degree of the map, so as to determine the size of the kernel and hence
the size of E(Fq).

�

We write

aq = q + 1−#E(Fq).

and we call this the trace of Frobenius. The reason is as follows. The
endomorphisms of E are, as a ring (one can add and compose endo-
morphisms), isomorphic to an order in a quadratic imaginary field, or
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an order in a quaternion algebra. In particular, φ always satisfies a
quadratic equation in this ring, i.e.

φ2 − aqφ+ q = 0.

One can also look at the action of Frobenius on E[`], the `-torsion,
which is isomorphic to F2

` for ` a prime coprime to p. Then the equation
above is its characteristic equation.

Hasse’s Theorem is called the Riemann hypothesis for elliptic curves,
because of an analogy with the Riemann zeta function. We’ll turn to
this next.

For a more elementary proof, see “The Riemann Hypothesis for El-
liptic Curves” by Chahal and Osserman. The next section will roughly
follow their exposition of the zeta function of an elliptic curve.

61. The Zeta function for elliptic curves

We defined a zeta function for Q, and it can more generally be done
for a number field. Then, we’ll turn to function fields, i.e. fields which
are fraction fields of

Fq[x, y]/(f(x, y))

where f(x, y) is an irreducible polynomial with coefficients in Fq. There
are a great many parallels between number fields and function fields.

We use the Euler product version of ζ to rewrite it a few different
ways.

ζ(s) =
∏
p

(
1− 1

ps

)−1

.

Our first task is to rewrite this in terms of valuations. Recall that
there’s a valuation v = vp for each prime p (the p-adic valuation).
Define

Ov := {x ∈ Q : v(x) ≥ 0}, pv := {x ∈ Q : v(x) > 0}.
Then Ov consists of rationals with no p in the denominator, and pv
consists of those which do have a p in the numerator. The quotient

Ov/pv
then consists of rationals (with no p in the denominator) modulo p, so
it is isomorphic to Z/pZ. We define the norm of a valuation as

nv = #Ov/pv.
So we can rewrite the Euler product as

ζ(s) =
∏
v

(
1− 1

nsv

)−1

.
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where v ranges over the discrete valuations of Q. (Note: the archimedean
absolute valuation doesn’t give a discrete valuation and is excluded.)

More generally, we can define everything analogously for a number
field and get a zeta function for that field:

ζK(s) =
∏
v

(
1− 1

nsv

)−1

.

where now we range over discrete valuations of that field. Let K be a
number field and OK its ring of integers. The valuations in this case
are p-adic, where p is a prime ideal of OK . It turns out that in this
case, nv = N(p) in general. So we could also write:

ζK(s) =
∏
p

(
1− 1

N(p)s

)−1

.

This is called the Dedekind zeta function. It is also expected to satisfy
the Riemann hypothesis, once extended to the whole complex plane.

Now we turn to global fields, i.e. let K be the fraction fields of
Fq[x, y]/(f(x, y)). Elements of K are rational functions, and valuations
count how often some linear term appears; i.e. the vanishing at a
point. To be precise, let P be a point on the curve C : f(x, y). Then
vP (f) = ordP (f), the order of vanishing or being a pole of f at point
P .

Interestingly, sometimes different points give the same valuation.
Suppose we consider the example (Chahal-Osserman) of

F3[x, y]/(y)

What curve is this? It has equation y = 0 in two variables; it’s a line
(the x-axis). We have

F3[x, y]/(y) ∼= F3[x]

so
K ∼= F3(x)

rational functions in one variable over F3. (We should actually projec-
tivize as usual; this is a projective line.)

Note that there is no square root of −1 in F3
∼= Z/3Z, so

F3[x]/(x2 + 1)

is a ring extension, and in fact a field extension. It has 9 elements, and
is called F9 (there is only one finite field of each allowable cardinality,
up to isomorphism). Call the square root of −1 by the moniker i.
Then i is a point on our curve, and it gives a valuation. But I claim
that i and −i both give the same valuation. For, any rational function
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vanishes (or has a pole) to the same order at i and −i because the
rational functions have coefficients in F3, i.e. factors (x− i) and (x+ i)
always come together to the same power.

Of course, the reason this happens is that i isn’t in the base field
F3. It is in an extension of degree 2, and there 2 points give the same
valuation. In general, a point defined over an extension of degree m
(and no smaller extension) will give the same valuation as m− 1 other
points, and the norm of such a valuation is qm.

Proposition 61.1. Let C be a curve in P2, defined over Fq, with affine
equation f(x, y) = 0. Let K be the fraction field of Fq[x, y]/(f(x, y)).
Then the valuations of K are ordP for each point P defined over Fq
and nvP = qm, where Fqm is the field of definition of P .

Sketch of proof. The statement that these are the only valuations is
an analogue to Ostrowski’s theorem. Here we’ll work out the norm,
sketchily. We have

Ov = { rational functions having no poles at P },
pv = { rational functions vanishing at P }.

Let’s suppose m = 1 for simplicity, and let P = (Px, Py). Then Ov
consists of rational functions, where the denominator, when considered
modulo x = Px, y = Py, does not vanish. On the other hand, pv consists
of such things where the numerator vanishes.

The maximal ideal of polynomials vanishing at P is IP = (x−Px, y−
Py), so we have

Ov/pv ∼= (Fq[x, y]/(f(x, y)))/IP ∼= Fq

In greater generality, where m ≥ 1, IP is defined as above only in
Fqm [x, y]/f(x, y) and its restriction to Fq[x, y]/f(x, y) is generated by
elements of higher degree. Details left to the reader. �

Now we can construct the zeta function of this function field. Let
Nm(C) be the number of points of C over Fq, and let Ñm(C) be the
number of points of C over Fq not defined over any smaller field. Let
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C̃(Fqm) be the points defined over Fqm and no smaller field.

ζK(s) =
∏
v

(
1− 1

Nv

)−1

=
∏
m

 ∏
P∈C̃(Fqm )

(
1− 1

qms

)− 1
m


=
∏
m

(
1− 1

qms

)− Ñm(C)
m

= exp

(∑
m

Ñm(C)

m
log

(
1− 1

qms

))

= exp

(∑
m

Ñm(C)
∑
n

−q
−mns

nm

)

= exp

∑
d

∑
m|d

Ñm(C)
q−ds

d


= exp

(∑
d

Nm(C)
q−ds

d

)
.

For function fields, the usual notation is t = q−s and Z instead of ζ.
Back to our projective line over F3, we know that

Nm(C) = qm + 1

so we get

ZC(t) = exp

(∑
m

(qm + 1)
tm

m

)

= exp

(∑
m

(
(qt)m

m
+
tm

m

))
= exp (− log(1− qt)− log(1− t))

=
1

(1− t)(1− qt)
So the zeta function is a simple rational function! Wow!
Finally, we can explain why Hasse’s Theorem is the Riemann Hy-

pothesis for Elliptic Curves. If one does the same work for an elliptic
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curve, we find that

ZE(t) =
1− aqt+ qt2

(1− t)(1− qt)
(I’m not giving a proof; there’s work to do here).

The Riemann Hypothesis is that this has zeroes only at Re(s) = 1/2.
Let’s put it back in terms of q:

ZE(q) =
1− aqq−s + q1−2s

(1− q−s)(1− q1−s)

So the zeroes of ZE(q) are the zeroes of the numerator. The zeroes
are both on Re(s) = 1/2 if their t are of absolute value q−1/2 (the
complex part of s giving a rotation). The RH is therefore equivalent
to the zeroes of 1− aqt+ qt2 having absolute value q−1/2, or the zeroes
of X2 − aqX + q both having absolute value q1/2, or the zeroes of
X2 − aqX + q being complex conjugates, i.e. discriminant zero, i.e.
a2
q < 4q i.e. Hasse Bound. Voila!

62. Weil Conjectures

Now that we have the zeta function in terms of point counting, we
could discuss the Weil Conjectures, but I won’t head very far in that
direction. Suffice it to say that they include the Riemann Hypothe-
sis for smooth projective varieties, and say roughly that the Riemann
Hypothesis holds, the zeta function has a functional equation, and the
zeta function is always a nice rational function like we saw for elliptic
curves. These have been proven.

63. Elliptic Curves over Complex Numbers

Let Λ be a lattice in the complex plane C. That is, a rank-2 Z-
module. The quotient C/Λ is topologically a torus, i.e. genus 1. It
turns out that it is an elliptic curve, in the sense that there is a mero-
morphic function ℘(z) which is periodic modulo Λ such that

C/Λ 7→ E : y2 = x3 + ax+ b

by the map

z 7→ (℘(z), ℘′(z)).

The function ℘ has a pole on Λ, which maps Λ to the point at infinity;
note that the definition of ℘ depends on Λ so one sometimes writes
℘(z,Λ). The coefficients a and b depend on Λ also.

The group law on the elliptic curve is inherited from addition on C.
For example, the two-torsion points are all the points 1

2
Λ.
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I’m not going into the theory that develops this, but it is perhaps
enlightening to compare it to a completely analogous case that you
are familiar with. That is, consider a rank-1 Z-module Λ in R, i.e.
Λ = cZ ⊂ R. Then R/Λ is a circle, topologically. There’s a map

R/Λ 7→ C : x2 + y2 = 1

which is given by

r 7→ (sin(2πr/c), cos(2πr/c))

The map depends on Λ.
The trigonometric functions, which are periodic in one dimension,

can be discovered as inverses to arclength integrals in calculus class:

sin−1(x) =

∫ x

0

dt√
1− t2

.

Similarly, the elliptic curve case arises from the study of the arclength
of ellipses, i.e. ∫

dt√
(t− a)(t− b)(t− c)

.

That’s the reason for the (somewhat unfortunate) name.
What I’m interested in for now is that a lattice Λ ⊂ C gives an elliptic

curve. In fact, every elliptic curve over C arises from some lattice, and
two lattices give the same curve if and only if they are homothetic,
meaning one is a (complex) scalar multiple of the other.

Theorem 63.1. Write

L = {lattices in C}, E = {elliptic curves over C}.
Then there is a bijection

L
C∗
↔ E

C− isomorphism
.

For our purposes, we have defined elliptic curves by their Weierstrass
equations; two are isomorphic if

a′ = u4a, b′ = u6b

The isomorphism classes are exactly parametrized by the j-invariant,

j = −1728
(4a)3

∆
, ∆ = −16(4a3 + 27b2).

One of the powerful tools to study elliptic curves is to study them as
a collection, in the form of the collection of lattices modulo homothety.
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64. The study of lattices in C

We could describe a lattice by giving a basis:

ω1Z+ ω2Z

But many ordered bases give the same lattice; any change of variables
(element of GL2(Z) will give a new basis. We can endow the lattice
with an orientation endowed by its basis: if the basis vectors, in the
order given, have angle 0 < θ < 2π, then it is positively oriented. If we
wish to study all lattices without orientation, we may as well restrict
to bases that give negative orientation7, and then consider them up to
SL2(Z).

Thus, as we have seen before,

{lattices}
C∗

↔ {negatively oriented bases}
C∗ · SL2(Z)

.

Here, the notation on the right hand side means we are quotienting
out by homothety (C∗) and by orientation changing change of basis
(SL2(Z)).

By taking a homothety, we can rotate and scale the lattice. Hence
we may assume its basis is of the form

τZ+ Z

where τ is some element of the upper half plane:

H = {z ∈ C : Im(z) > 0}.
We obtain

{lattices}
C∗

↔ {τ ∈ H}
SL2(Z)

.

But now we have to describe how SL2(Z) acts on τ . It acts on 1, τ
by basis change. There are various ways to accomplish a basis change,
all pretty much isomorphic8. Let’s say it gives a new basis

aτ + b, cτ + d.

But now we wish to take a homothety so this is of the form

τ ′, 1

In other words,

τ ′ =
aτ + b

cτ + d
.

7negative is more convenient than positive
8I mean, for example, that you could apply the transpose first, which is an

automorphism of SL2, etc. etc.
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To check that we’ve preserved negative orientation, we should check
that

Im(τ ′) = Im

(
aτ + b

cτ + d

)
=

(ad− bc) Im(τ)

|cτ + d|2 .

So indeed SL2 acting in this way preserves orientation (and its comple-
ment in GL2 would reverse it). The map

z 7→ az + b

cz + d

is called a Möbius transformation.
To reiterate: H parametrizes bases up to homothety. But lattices up

to homothety are parametrized by

SL2(Z)\H
We write SL2(Z) on the left to keep track of the fact that it’s a left
action (before I wrote it as a fraction, which was a bit ambiguous).

To sum up:

Proposition 64.1. Let Λ = ω1Z+ω2Z ⊂ C where ω1, ω2 are negatively
oriented.

(1) Any other negatively oriented basis for Λ is of the form

ω′1 = aω1 + bω2

ω′2 = cω1 + dω2

(2) Two lattices τZ+ Z and τ ′Z+ Z are homothetic if and only if

τ ′ =
aτ + b

cτ + d
, for some

(
a b
c d

)
∈ SL2(Z).

(3) There is a τ ∈ H such that Λ is homothetic to τZ+ Z.

Since (
−1 0
0 1

)
acts trivially on H, we should actually be using PSL2(Z) all along.

Theorem 64.2. We have a bijection

{lattices}
C∗

↔ PSL2(Z)\H.

Recall from before that PSL2(Z) is generated by the elements

S =

(
0 −1
1 0

)
, T =

(
1 1
0 1

)
.

Here’s the upper half plane, with the action of PSL2(Z) (known in this
context as the modular group) shown:
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The image is from Wikimedia Commons. It shows in grey the fun-
damental domain; all the other white regions are images under the
modular group. The element T represents translation by 1, while S
takes the grey region to the adjacent white region inside the unit circle
by inversion in that circle.

I won’t prove that these are the regions; for a proof, see the first
chapter of Advanced Topics in the Arithmetic of Elliptic Curves.

Remark: The topograph can be drawn over this picture by putting
a vertex in each region and connecting two vertices if the regions are
adjacent across a blue line. This is another picture of the topograph
as a graph associated to PSL2(Z).

65. The Modular Curve X(1) – sketchily

It is traditional to write

Γ(1) = PSL2(Z)

in the context at hand. The quotient space Γ(1)\H classifies lattices
up to homothety, or, equivalently, elliptic curves over C. Topologically,
this looks like the grey region above; it’s a punctured sphere in the
sense that there is one point missing up ‘at infinity’. Equivalently, one
could use the white region below it; the missing point is on the real
line, which is not included in the upper half plane. Without further
explanation, I’ll just add a point and call the resulting space X(1), the
modular curve. It is topologically a sphere. Each point on the modular
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curve represents a single elliptic curve, except the point I added, called
a cusp. The j-invariant gives an isomorphism

X(1)→ P1(C)

taking a point representing a curve to the j-invariant of that curve.
To study this space one studies the following objects:

Definition 65.1. A modular form of weight 2k is a function on H

which is everywhere holomorphic (on H and at infinity), and satisfies

f(γτ) = (cτ + d)2kf(τ)

for any γ =

(
a b
c d

)
∈ Γ(1).

For example, the coefficients of the Weierstrass equation, which de-
pend on τ , are actually modular forms of weight 4 and 6. The j-
invariant is the only modular form of weight 0 – and hence the only
modular form which is actually a function on Γ(1)\H. The others are
really differential forms on X(1).

66. Fermat’s Last Theorem

For more, look at Glenn Stevens’ Overview from Modular Forms and
Fermat’s Last Theorem edited by Cornell, Silverman and Stevens.

Theorem 66.1 (Fermat’s Last Theorem). Let n be an integer. Then
the only integer solutions (a, b, c) to

an + bn = cn

satisfy abc = 0.

Following Stevens, let’s write FLT (n) for the statement above, re-
stricted to that integer n. It is clear that whenever d | n, FLT (d) =⇒
FLT (n). So we just need to prove it for primes. We’ll rearrange the
equation to

ap + bp + cp = 0.

Fermat (1640): FLT(4)
Euler (1760s): FLT(3)
There’s a ton of interesting stuff to do with the history of FLT before

the modern proof. I won’t go into it.
Let (a, b, c) be a solution to FLT(p). Let A = ap, B = bp, C = cp;

then A+B + C = 0. Define an elliptic curve:

EA,B,C = y2 = x(x− A)(x−B)



MATHEMATICS 6110, FALL 2013 INTRODUCTORY NUMBER THEORY153

We compute some of the basic quantities associated to this curve,
like the discriminant, and it gives us arithmetic information about the
curve. The arithmetic information is so wild that it can’t be true.

67. Proof of Fermat’s Last Theorem

There are other subgroups of Γ(1) of interest, called congruence sub-
groups, e.g.

Γ(N) = {γ ∈ Γ(1) : γ ≡ I (mod N)}.
These (the above and others) give rise to other modular curves. Var-

ious modular curves parametrise such things as elliptic curves together
with N -torsion points or cyclic subgroups of order N , etc.

In particular, if we define

Γ0(N) = {
(
a b
c d

)
∈ Γ(1) : c ≡ 0 (mod N)}

Then the resulting curve, X0(N) parametrises elliptic curves together
with a cyclic subgroup of order N . This modular curve has an explicit
polynomial equation. An elliptic curve is called modular if this modular
curve, for some N , covers the elliptic curve. Note that this is weird:
the modular curve parametrizes the collection of elliptic curves, and
then maps to our one elliptic curve of interest.

The main statement needed for Fermat’s Last Theorem is that all
elliptic curves are modular 9. Being modular can also be interpreted in
an analytic way. There’s a sort of zeta function for the elliptic curve
over Q, called an L-function. And any modular form also has a function
associated to it, a fourier expansion. An elliptic curve is modular if its
L-function’s coefficients are the same as the fourier expansion coeffi-
cients of some modular form. (The modular form gives us the covering
map referred to above.)

Then one shows that the curve EA,B,C defined above cannot be mod-
ular, because the modular form it would be associated to has properties
that can’t exist.

68. Arithmetic Dynamics

For the last part of the course, I’m going to use notes of Silverman
from the 2010 Arizona Winter School, and teach you some basics of
Arithmetic Dynamics. The notes are available via a link on our website.

9actually, just semistable ones are needed, which is what Wiles proved, but we
haven’t even defined that


