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Thank you to Khaled Allen for scribing some of this.

Overview. We wish to show there are primitive roots, i.e. elements of order ¢(p) modulo p.
To do this, we more generally count the elements of order A modulo p. If we have one element of
order A, we are able to find ¢(\) total elements amongst its powers. We are also able to rule out
the existence of more elements of order A because that would mean more roots of the polynomial
T* — 1, and we can bound the number of roots of any polynomial. Therefore there are either 0 or
() elements of order A. Finally, we use a clever counting argument on fractions to show that if
we don’t have a full ¢()) in every case, we simply wouldn’t have enough invertible elements modulo
p at all. Hence the number of elements of order A is exactly ¢(A). In particular, there are some
elements of every order, including full order, i.e. primitive roots.

Proposition 1. Let p be a prime. Let T be a variable. Let f(T) be a polynomial of degree d > 1
with integer coefficients. Then f(T) has at most d roots modulo p.

Note: In other words, there are at most d distinct residues x modulo p such that f(z) = 0
(mod p).

Proof. Let us set notation and write
f(r) = caT + cq 1T P4 4+ 1T+ cp.

Let a be a root of f, ie. f(a) =0 (mod p). First we will show that f(T') has a linear factor
T — a. We have

f(T) = f(T) = f(a) (mod p)
=cg(T? —a®) +cqg 1 (T —a™ )+ + (T —a) (mod p)

(T—a)( <T;:Zd> +ca (Td_Tl:Zd_l> +ota (?:Z)) (mod p)

There is a useful identity that x —y always divides 2™ — y™ (as polynomials with integer coefficents)
for positive integers n:
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In particular, we have shown that
f(T)=(T = a)g(T) (mod p)

where ¢(T) is a polynomial of degree at most d — 1.
Now we can consider any root b of f. Then, plugging in b, we have

0=f(b) = (b—a)g() (mod p).

But since p is prime, a product is zero modulo p if and only if one of the factors is zero modulo p.
Hence,
either b=a (modp) or g¢g(b)=0 (modp).

Now we use induction on the degree of the polynomial. The base case is that of a linear polynomial,
i.e. degree one, which has exactly one root. Since ¢g(T) is of lower degree, in fact of degree at most
d — 1, we can assume (as the inductive hypothesis) that it has at most d — 1 roots. Hence f(T') has
at most d roots (the roots of g(T') or the value a).



Proposition 2. Let p be prime. Suppose there exists an element a of order A mod p. Then the
number of elements of order X is ¢(N).

Proof. Let p be a prime. Suppose we have an element a of order A. In particular, a* = 1 mod p,
i.e. a is a root of the polynomial 7* — 1 modulo p.

Then any power a’,a’, ... a* ! of a will also be a root of T7* —1 = 0 mod p, since if we set
T =a", then
™ —1=(a")* =1 (mod p)
= (™" -1 (mod p)
=1-1 (mod p)
=0 (mod p).
Then a°, a',...,a*" ! give us A distinct roots of 7% —1 mod p and so by the previous Proposition,

there are no more roots.

But any element of order X is a root of T7* — 1 and hence a power of a. Therefore we have
reduced our search for elements of order A to searching in the list of powers of a.

However, some of these powers of a may be of lower order (for example, a® = 1). So we will
compute the order of a® for any 1 < e < A — 1. In fact, we will show its order is m.

First, its order is at most this, because

(ae)m — glem(e)) — ,a multiple of A 1 mod p.

But note that the exponent lem(e, A) is the smallest multiple of e such that ¢®* =1 mod p (because
a® =1 only for multiples of A). Therefore the order of a® is m.

Therefore a® is of order A if and only if ged(e, A) = 1. So the number of a® of order A is exactly

P(A). O
The next proposition is called the Totient Sum Formula.

Proposition 3. Let n > 1 be an integer. Then
> od) =n.
d|n

Proof. We prove this by showing that there are two ways to count the fractions of denominator n
in the interval (0,1] (not necessarily in reduced form).

The first is to allow the numerators to range from 1 to n, hence there are n such fractions.

The second is to remark that this is the same as the set of reduced fractions with denominator
dividing n. This is because any fraction with denominator n which is not reduced, reduces to one
of these fractions, and any reduced fraction with denominator dividing n can be multiplied top and
bottom to have denominator n.

So let us count the reduced fractions of denominator d | n. There are ¢(d) allowable numerators,
hence ¢(d) such fractions. Summing up over d, we have

> ¢(d)
d|n

total fractions in our set. O



Theorem 1. There are ¢(p — 1) primitive roots modulo p.

Proof. Primitive roots are to be found amongst the invertible elements modulo p. There are p — 1
total invertible elements, each of order A | p— 1, for some A\. We know that the number of elements
of order \ is either 0 or ¢(A). Hence,

p—1= Z (number of elements of order \) = Z (0 or ¢(N)).
Alp—1 Alp—1
But we also know, from the Totient Sum Formula, that
p—1= Y o(\.

Alp—1

Hence none of the summands in the first displayed equation can actually be 0. That is, for each
A, the number of elements of order \ is exactly ¢(A). In particular, our theorem is this fact with
A=p—1. O



