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Thank you to Khaled Allen for scribing some of this.
Overview. We wish to show there are primitive roots, i.e. elements of order φ(p) modulo p.

To do this, we more generally count the elements of order λ modulo p. If we have one element of
order λ, we are able to find φ(λ) total elements amongst its powers. We are also able to rule out
the existence of more elements of order λ because that would mean more roots of the polynomial
Tλ − 1, and we can bound the number of roots of any polynomial. Therefore there are either 0 or
φ(λ) elements of order λ. Finally, we use a clever counting argument on fractions to show that if
we don’t have a full φ(λ) in every case, we simply wouldn’t have enough invertible elements modulo
p at all. Hence the number of elements of order λ is exactly φ(λ). In particular, there are some
elements of every order, including full order, i.e. primitive roots.

Proposition 1. Let p be a prime. Let T be a variable. Let f(T ) be a polynomial of degree d ≥ 1
with integer coefficients. Then f(T ) has at most d roots modulo p.

Note: In other words, there are at most d distinct residues x modulo p such that f(x) ≡ 0
(mod p).

Proof. Let us set notation and write

f(T ) = cdT
d + cd−1T

d−1 + · · ·+ c1T + c0.

Let a be a root of f , i.e. f(a) ≡ 0 (mod p). First we will show that f(T ) has a linear factor
T − a. We have

f(T ) ≡ f(T )− f(a) (mod p)

≡ cd(T d − ad) + cd−1(T d−1 − ad−1) + · · ·+ c1(T − a) (mod p)

≡ (T − a)

(
cd

(
T d − ad

T − a

)
+ cd−1

(
T d−1 − ad−1

T − a

)
+ · · ·+ c1

(
T − a
T − a

))
(mod p)

There is a useful identity that x−y always divides xn−yn (as polynomials with integer coefficents)
for positive integers n:

xn − yn

x− y
= xn−1 + xn−2y + · · ·+ xyn−2 + yn−1.

In particular, we have shown that

f(T ) ≡ (T − a)g(T ) (mod p)

where g(T ) is a polynomial of degree at most d− 1.
Now we can consider any root b of f . Then, plugging in b, we have

0 ≡ f(b) ≡ (b− a)g(b) (mod p).

But since p is prime, a product is zero modulo p if and only if one of the factors is zero modulo p.
Hence,

either b ≡ a (mod p) or g(b) ≡ 0 (mod p).

Now we use induction on the degree of the polynomial. The base case is that of a linear polynomial,
i.e. degree one, which has exactly one root. Since g(T ) is of lower degree, in fact of degree at most
d− 1, we can assume (as the inductive hypothesis) that it has at most d− 1 roots. Hence f(T ) has
at most d roots (the roots of g(T ) or the value a).
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Proposition 2. Let p be prime. Suppose there exists an element a of order λ mod p. Then the
number of elements of order λ is φ(λ).

Proof. Let p be a prime. Suppose we have an element a of order λ. In particular, aλ ≡ 1 mod p,
i.e. a is a root of the polynomial Tλ − 1 modulo p.

Then any power a0, a1, . . . , aλ−1 of a will also be a root of Tλ − 1 ≡ 0 mod p, since if we set
T = an, then

Tλ − 1 ≡ (an)λ − 1 (mod p)

≡ (aλ)n − 1 (mod p)

≡ 1− 1 (mod p)

≡ 0 (mod p).

Then a0, a1, . . . , aλ−1 give us λ distinct roots of Tλ− 1 mod p and so by the previous Proposition,
there are no more roots.

But any element of order λ is a root of Tλ − 1 and hence a power of a. Therefore we have
reduced our search for elements of order λ to searching in the list of powers of a.

However, some of these powers of a may be of lower order (for example, a0 = 1). So we will
compute the order of ae for any 1 < e ≤ λ− 1. In fact, we will show its order is λ

gcd(e,λ) .

First, its order is at most this, because

(ae)
λ

gcd(e,λ) ≡ alcm(e,λ) ≡ aa multiple of λ ≡ 1 mod p.

But note that the exponent lcm(e, λ) is the smallest multiple of e such that ax ≡ 1 mod p (because
ax ≡ 1 only for multiples of λ). Therefore the order of ae is λ

gcd(e,λ) .

Therefore ae is of order λ if and only if gcd(e, λ) = 1. So the number of ae of order λ is exactly
φ(λ).

The next proposition is called the Totient Sum Formula.

Proposition 3. Let n > 1 be an integer. Then∑
d|n

φ(d) = n.

Proof. We prove this by showing that there are two ways to count the fractions of denominator n
in the interval (0, 1] (not necessarily in reduced form).

The first is to allow the numerators to range from 1 to n, hence there are n such fractions.
The second is to remark that this is the same as the set of reduced fractions with denominator

dividing n. This is because any fraction with denominator n which is not reduced, reduces to one
of these fractions, and any reduced fraction with denominator dividing n can be multiplied top and
bottom to have denominator n.

So let us count the reduced fractions of denominator d | n. There are φ(d) allowable numerators,
hence φ(d) such fractions. Summing up over d, we have∑

d|n

φ(d)

total fractions in our set.

2



Theorem 1. There are φ(p− 1) primitive roots modulo p.

Proof. Primitive roots are to be found amongst the invertible elements modulo p. There are p− 1
total invertible elements, each of order λ | p− 1, for some λ. We know that the number of elements
of order λ is either 0 or φ(λ). Hence,

p− 1 =
∑
λ|p−1

(number of elements of order λ) =
∑
λ|p−1

(0 or φ(λ)) .

But we also know, from the Totient Sum Formula, that

p− 1 =
∑
λ|p−1

φ(λ).

Hence none of the summands in the first displayed equation can actually be 0. That is, for each
λ, the number of elements of order λ is exactly φ(λ). In particular, our theorem is this fact with
λ = p− 1.
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