Goal: Given $a, b, c \in \mathbb{Z}$, to find all integer solutions (x, y) to $ax + by = c$.

The Homogeneous Case

The term *homogeneous* means the number after the $=$ is zero.

Theorem 1 (Homogeneous Case). *Let $a, b \in \mathbb{Z}$. The set of integer solutions (x, y) to the equation $ax + by = 0$ is*

$$\left\{ \left(\frac{bk}{\gcd(a, b)}, \frac{-ak}{\gcd(a, b)} \right) : k \in \mathbb{Z} \right\}.$$

Proof. See Course Notes of Mon, Jan 28 (used the $\gcd(a, b) \cdot \text{lcm}(a, b) = ab$ theorem).

The principle of adding solutions

If

$$(x, y) \text{ is a solution to } ax + by = c,$$

and

$$(x', y') \text{ is a solution to } ax + by = c',$$

then

$$(x + x', y + y') \text{ is a solution to } ax + by = c + c'.$$
Extended GCD Replacement

Theorem 2 (Extended GCD Replacement). Let $A, B \in \mathbb{Z}$. Let $k \in \mathbb{Z}$, and write $C = A + kB$. Then

1. $\gcd(A, B) = \gcd(B, C)$

2. Let $a, b \in \mathbb{Z}$. Suppose $\gcd(a, b) = 1$. Suppose that $(x_A, y_A) \in \mathbb{Z}^2$ is a solution to $ax + by = A$ and (x_B, y_B) is a solution to $ax + by = B$. Then $(x_A + kx_B, y_A + ky_B)$ is a solution to $ax + by = C$.

Proof. Item 1 is the GCD Replacement Theorem (proven in class) for A, B and $C = A + kB$. The additional statement, Item 2, is a consequence of the principle of adding solutions.

Extended Euclidean Algorithm

The regular Euclidean Algorithm is written in regular typeface (to match your course notes), and the Extended Euclidean Algorithm includes the extra *italicized* parts.

Suppose we wish to solve $ax + by = \gcd(a, b)$. Assume $a > b > 0$.

1. Let $c_0 = a$ and $c_1 = b$.
 Also let $(x_0, y_0) = (1, 0)$ and $(x_1, y_1) = (0, 1)$.
 Note: $ax_i + by_i = c_i$ for $i = 0, 1$.

2. Let $i = 1$.

3. Then, until $c_i = 0$, repeat the following:
 (a) Use the division algorithm to write
 $$c_{i-1} = c_i q + r, \quad 0 \leq r < c_i.$$
 (b) Let $c_{i+1} = c_{i-1} - c_i q = r$.
 And let $(x_{i+1}, y_{i+1}) = (x_{i-1}, y_{i-1}) - (x_i, y_i)q$.
 Note: We now have $ax_{i+1} + by_{i+1} = c_{i+1}$, by *Extended GCD Replacement*.
 (c) Increment i.

4. When we are done ($c_i = 0$), we have $c_{i-1} = \gcd(a, b)$.
 But also, (x_{i-1}, y_{i-1}) is a solution to $ax + by = c_{i-1} = \gcd(a, b)$.

2
Example

The example below illustrates the process for solving $24x + 17y = 1$.

1. Computing the $gcd(24, 17)$ using the Euclidean algorithm:

\[
\begin{align*}
24 &= 1 \cdot 17 + 7 \\
17 &= 2 \cdot 7 + 3 \\
7 &= 2 \cdot 3 + 1 \\
3 &= 3 \cdot 1 + 0
\end{align*}
\]

2. The corresponding Extended Euclidean Algorithm:

Notation: The card (x, y) gives c tells you that the linear combination $24x + 17y = c$.

\[
\begin{align*}
(1, 0) \text{ gives } 24 &= 1 \cdot (0, 1) \text{ gives } 17 \\
(0, 1) \text{ gives } 17 &= 2 \cdot (1, -1) \text{ gives } 7 \\
(1, -1) \text{ gives } 7 &= 2 \cdot (-2, 3) \text{ gives } 3 \\
(-2, 3) \text{ gives } 3 &= 3 \cdot (5, -7) \text{ gives } 1 \\
(5, -7) \text{ gives } 1 &= 3 \cdot (-17, 24) \text{ gives } 0
\end{align*}
\]

Now, simply observe that the second to last card on the right column reads out the needed solution: $24(5) + 17(-7) = 1$. Doing the algorithm to the bitter end (the card $24(-17) + 17(24) = 0$) is a way to check your work.
Existence of Solutions

Theorem 3 (Existence of Solutions). Let \(a, b, c \in \mathbb{Z} \). The equation \(ax + by = c \) has integer solutions if and only if \(\gcd(a, b) \mid c \). If there is a solution, it can be found using the Extended Euclidean Algorithm.

Proof. Suppose that \(ax + by = c \) has an integer solution \((x, y) \). Then \(\gcd(a, b) \mid ax \) and \(\gcd(a, b) \mid by \), so that \(\gcd(a, b) \mid c \).

Now suppose \(\gcd(a, b) \mid c \). The Extended Euclidean Algorithm guarantees a solution \((x, y) \) to \(ax + by = \gcd(a, b) \) (this follows from the description of the algorithm). Then, writing \(c = k \gcd(a, b) \), then \((kx, ky)\) is a solution to \(ax + by = c \).

One Gives All

Theorem 4 (One Gives All Theorem). Let \(a, b, c \in \mathbb{Z} \). Suppose that \((x_0, y_0) \) is one integer solution to \(ax + by = \gcd(a, b) \). Then the set of all integer solutions to the equation \(ax + by = c \gcd(a, b) \) is

\[
S = \left\{ \left(cx_0 + \frac{bk}{\gcd(a, b)}, cy_0 + \frac{-ak}{\gcd(a, b)} \right) : k \in \mathbb{Z} \right\}.
\]

Proof. **Everything in \(S \) is a solution:** Since \(ax_0 + by_0 = \gcd(a, b) \), we have \(a(cx_0) + b(cy_0) = c \gcd(a, b) \). Therefore \((cx_0, cy_0) \) is an integer solution to \(ax + by = c \gcd(a, b) \). By the theorem governing the homogeneous case, the entire family of integer solutions to \(ax + by = 0 \) is

\[
\left\{ \left(\frac{bk}{\gcd(a, b)}, \frac{-ak}{\gcd(a, b)} \right) : k \in \mathbb{Z} \right\}.
\]

By the principle of addition, every element of \(S \) is an integer solution to \(ax + by = c \gcd(a, b) \).

Every solution is in \(S \): If \((x', y') \) is another solution to \(ax + by = c \gcd(a, b) \), then the difference \((x' - cx_0, y' - cy_0) \) is a solution to \(ax + by = 0 \). Therefore \((x', y') \in S \).