
Math 3110: Quiz #2 – Solutions
February 24, 2019

Name:

Question 1

( 16 minutes / 16 points ) Short answers. Each question is worth 2 points.

1. Give the definition of a prime number.

Solution. An integer n > 1 is prime if it has no divisors d such that 1 < d < n.

Note: many of you asserted the only divisors were 1 and n, but −1 and −n are also divisors.

2. (True/False) The numbers 1/
√

2 and
√

2 are commensurable.

Solution. Their ratio is
√

2/(1/
√

2) =
√

2
2

= 2, which is rational. Therefore they are commensurable: True.

3. List two fractions, in lowest form, which are kissing 3/4.

Solution. a/b is kissing 3/4 if 4a − 3b = ±1. We can solve this by inspection: e.g. a = 1, b = 1. Another
solution can be obtained by using the homogeneous solution, e.g. a = 1 + 3 = 4, b = 1 + 4 = 5. Therefore
two kissing fractions are 1/1 and 4/5.

The full list of fractions I saw while grading was 1/1, 2/3, 4/5, 5/7 and 7/9, although there are infinitely
many possibilities. Since it was requested in lowest form, −1/− 1 doesn’t qualify.

4. Compute σ0(81).

Solution. This is the divisor-counting function. The factorization of 81 is 81 = 3 · 3 · 3 · 3, so its positive
divisors are 1, 3, 9, 27, 81. There are five of them, so σ0(81) = 5.
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5. Give the prime factorization of 225/7.

Solution. The prime factorization is 225/7 = 32 · 52 · 7−1.

6. Circle the functions f(x) below which satisfy limx→∞ π(x)/f(x) = 1. (Here, π(x) is the prime counting
function, the number of primes p in the range 1 < p < x.)

lnx
x

lnx

lnx

x

∫ x

2

dt

t
sin(x)

Solution. The 2nd item should be circled. The first grows much too slowly; the third and fifth stay ≤ 1.
The fourth is a version of the first (it should have a ln t in the denominator to become li(x), which would
be correct). The fact that the 2nd works is a fact we discussed (but did not prove) in class. The proof is
challenging.

7. (True/False) There exist two irrational numbers x and y so that x+ y is rational, but x− y is irrational.

Solution. True. For example, x = −y =
√

2. Then x+ y = 0 but x− y = 2
√

2.

8. Compute the mediant of 2/3 and 3/4.

Solution. The mediant is given by (2 + 3)/(3 + 4) = 5/7.

Question 2

( 10 minutes / 10 points )
Prove the following theorem.

Theorem 1. There are infinitely many prime numbers.

Solution Your text has a nice proof, as do your course notes. (Euclid’s proof is the standard.) There are
dozens of known proofs out there.
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Question 3

( 10 minutes / 10 points )
Prove the following theorem.
Hint: I strongly suggest using the prime factorization characterization of the gcd and lcm; this proof is much

easier that way. If you’ve forgotten the characterization of the gcd, may I remind you with a hint: the power of a
prime dividing gcd(a, b) is the smaller of its power in a and its power in b. You may use the prime factorization
characterization of gcd and lcm without proof.

Theorem 2. Let a, b be positive integers. Then gcd(a, b) lcm(a, b) = ab.

Solution. Let a and b be positive integers. Then both have a prime factorization. We will write this as

a =
∏
p

pep , b =
∏
p

pfp .

Then, the gcd and lcm of a and b have prime factorizations given in terms of those written above, namely,

gcd(a, b) =
∏
p

pmin{ep,fp}, lcm(a, b) =
∏
p

pmax{ep,fp}.

Then, we have

gcd(a, b) lcm(a, b) =
∏
p

pmin{ep,fp} ·
∏
p

pmax{ep,fp}

=
∏
p

pmin{ep,fp}+max{ep,fp}

=
∏
p

pep+fp

=
∏
p

pep
∏
p

pfp

= ab.

Question 4

( 10 minutes / 10 points )
Find four distinct Pythagorean triples (a, b, c) so that 0 < a < b < c and gcd(a, b) = 1. You may use any

method, but the method must be justified (i.e. not “guessing”).

Solution. We have seen a bijection between rational slopes and Pythagorean triples. It involved the formula

m→ (m2 − 1, 2m,m2 + 1).
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1. Letting m = 2, we obtain 3, 4, 5. This qualifies.

2. Letting m = 3, we obtain 8, 6, 10. This doesn’t qualify; in fact it is a multiple/permutation of the first one.

3. Letting m = 4, we obtain 15, 8, 17. Re-ordering, this is 8, 15, 17 and it qualifies.

4. Letting m = 5, we obtain 24, 10, 26. Dividing by 2 and reordering, this is 5, 12, 13. This qualifies.

5. Letting m = 6, we obtain 35, 12, 37. Re-ordering, this is 12, 35, 37, and this qualifies.

We have now found four triples:

(3, 4, 5), (8, 15, 17), (5, 12, 13), (12, 35, 37).

There are other possible solutions. It is possible, for example, to use rational m with denominator, but
calculations by hand are harder, e.g. letting m = 1/2, we obtain −3/4, 1, 5/4, which, when scaled to become
integers, is (−3, 4, 5); changing sign on the first entry we obtain (3, 4, 5), which we got from m = 2 with less
computation.

Solution, second method.
For those who watched the video assigned on the website, some used that method, which is computationally

slicker but involves talking about complex numbers. The idea is to pick a complex point a + bi, with a, b ∈ Z,
and square it. Then its distance from the origin becomes an integer c. Check out the video (under Lectures),
for more explanation. For example, (2 + 3i)2 = −5 + 12i and this has length

√
52 + 122 = 13. We obtain triple

(5, 12, 13).
The full list of valid triples I saw on the exams was

(3, 4, 5), (5, 12, 13), (8, 15, 17), (20, 21, 29), (7, 24, 25), (9, 40, 41), (16, 63, 65), (12, 35, 37), (11, 60, 61), (13, 84, 85).
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