Geometry and Recurrence Sequences From Sequences to Nets Pairings Summary

Elliptic Nets and Points on Elliptic Curves

Katherine Stange

Department of Mathematics Brown University http://www.math.brown.edu/~stange/

Algorithmic Number Theory, Turku, Finland, 2007

Outline

- Geometry and Recurrence Sequences
 - A Motivating Example
 - Elliptic Divisibility Sequences
- 2 From Sequences to Nets
 - Generalising Sequences
 - Elliptic Nets
 - Primes in Elliptic Nets
 - Periodicity Properties
- Pairings
 - Removing the Problem of Bases
 - Tate and Weil Pairings
 - Algorithms

Divisibility in Linear Recurrences

Consider an integer linear recurrence of the form

Summary

$$L_0 = 0;$$
 $L_1 = 1;$ $L_n = aL_{n-1} - L_{n-2}$

Theorem (Divisibility Property)

If n|m then $L_n|L_m$.

Proof.

Let α be a root of $x^2 - ax + 1 = 0$. Then

$$L_n = \Phi_n(\alpha) := \frac{\alpha^n - \alpha^{-n}}{\alpha - \alpha^{-1}}$$
.

Geometric Viewpoint

The function

$$\Phi_n(x) = \frac{x^n - x^{-n}}{x - x^{-1}}$$

is the function on \mathbb{G}_m with simple zeroes at the 2n-torsion points besides 1 and -1.

Reducing Modulo a Prime

$$egin{array}{ccc} \mathfrak{p} & \mathbb{Q}(lpha) \ | & | \ p & \mathbb{Q} \end{array}$$

- Reducing modulo \mathfrak{p} , we obtain \mathbb{G}_m over \mathbb{F}_q .
- The image $\tilde{\alpha}^2$ has some finite order n_p .
- For all k, $\Phi_{kn_p}(\alpha) \equiv 0 \mod p$.

Divisibility Restated (Almost)

For each prime p there is a positive integer n_p such that

Summary

$$L_n \equiv 0 \mod p \iff n_p | n$$

What Geometry Tells Us

- The geometry gives meaning to the statement that $p|L_n$.
- It also tells us more: e.g. $n_p|q-1$.

Example

The even-index Fibonaccis satisfy $F_n = 3F_{n-1} - F_{n-2}$. They are

$$1, 3, 8, 21, 55, 144, 377, \dots$$

The prime 7 appears first at index $4|7^2 - 1$. The prime 11 appears first at index 5|11 - 1.

Elliptic Divisibility Sequences

Definition

A sequence h_n is an *elliptic divisibility sequence* if for all positive integers m > n,

$$h_{m+n}h_{m-n}h_1^2 = h_{m+1}h_{m-1}h_n^2 - h_{n+1}h_{n-1}h_m^2$$
.

- Generated by initial conditions h_0, \ldots, h_4 via the recurrence.
- Necessarily $h_0 = 0$; by convention $h_1 = 1$.
- If initial terms are integers and $h_2|h_4$, then the sequence is entirely integer and satisfies the divisibility property.

Defining An Appropriate Function

Definition

Let σ be the Weierstrass sigma function associated to the complex uniformization of an elliptic curve.

$$\Psi_n(z) = \frac{\sigma(nz)}{\sigma(z)^{n^2}}$$

- Elliptic functions.
- Simple zeroes at non-zero *n*-torsion points.

Elliptic Divisibility Sequences from Elliptic Curves

Theorem (M. Ward, 1948)

Let E be an elliptic curve defined over $\mathbb Q$ with lattice $\Lambda \subset \mathbb C$, and let $u \in \mathbb C$ correspond to a rational point P on E. Then

$$h_n := \Psi_n(u)$$

forms an elliptic divisibility sequence.

We call this the sequence associated to E, P.

Example: $y^2 + y = x^3 + x^2 - 2x$, P = (0, 0)

Summary

$$P = (0,0) \qquad h_1 = 1$$

$$[2]P = (3,5) \qquad h_2 = 1$$

$$[3]P = \left(-\frac{11}{9}, \frac{28}{27}\right) \qquad h_3 = -3$$

$$[4]P = \left(\frac{114}{121}, -\frac{267}{1331}\right) \qquad h_4 = 11$$

$$[5]P = \left(-\frac{2739}{1444}, -\frac{77033}{54872}\right) \qquad h_5 = 38$$

$$[6]P = \left(\frac{89566}{62001}, -\frac{31944320}{15438249}\right) \qquad h_6 = 249$$

$$[7]P = \left(-\frac{2182983}{5555449}, -\frac{20464084173}{13094193293}\right) \qquad h_7 = -2357$$

The Recurrence Calculates the Group Law

Points on the curve have the form

$$[n]P = \left(\frac{a_n}{h_n^2}, \frac{b_n}{h_n^3}\right)$$

- The sequences a_n and b_n can be calculated from h_n .
- The point [n]P can be recovered from $h_{n-2}, h_{n-1}, h_n, h_{n+1}, h_{n+2}$.

Lesson 1

The recurrence calculates the group law (for multiples of P).

History of Research

- Applications to Elliptic Curve Discrete Logarithm Problem in cryptography (R. Shipsey)
- Finding integral points (M. Ayad)
- Primes in EDS (G. Everest, J. Silverman, T. Ward, ...)
- EDS are a special case of Somos Sequences (A. van der Poorten, J. Propp, M. Somos, C. Swart, ...)
- p-adic and function field cases (J. Silverman)
- Continued fractions and elliptic curve group law (W. Adamas, A. van der Poorten, M. Razar)
- Sigma function perspective (A. Hone, ...)
- Hyper-elliptic curves (A. Hone, A. van der Poorten, ...)
- More...

Can we do more?

The elliptic divisibility sequence is associated to the sequence of points [n]P on the curve.

$$[n]P \leftrightarrow h_n$$

The Mordell-Weil group of an elliptic curve may have rank > 1. We might dream of . . .

$$[n]P + [m]Q \leftrightarrow h_{n,m}$$

Elliptic Nets

Definition (KS)

Let R be an integral domain, and A a finite-rank free abelian group. An *elliptic net* is a map $W: A \rightarrow R$ such that the following recurrence holds for all $p, q, r, s \in A$.

$$W(p+q+s)W(p-q)W(r+s)W(r) \ + W(q+r+s)W(q-r)W(p+s)W(p) \ + W(r+p+s)W(r-p)W(q+s)W(q) = 0$$

- The recurrence generates the full array from finitely many initial values.
- The recurrence implies the elliptic divisibility sequence recurrence for $A = \mathbb{Z}$.

Elliptic Nets of Rank 2

Note

We will specialise to

$$rank(A) = 2$$

for the remainder of this talk.

- All results hold for general rank.
- The rank 1 case is the theory of elliptic divisibility sequences.
- Results stated for $\mathbb Q$ and $\mathbb Z$ hold generally for number fields.
- In fact, with more work, many of the same results hold for any field.

Elliptic Functions $\Psi_{n,m}$

Definition (KS)

Fix a lattice $\Lambda \in \mathbb{C}$ corresponding to an elliptic curve E. For each pair $(n, m) \in \mathbb{Z} \times \mathbb{Z}$, define a function $\Psi_{n,m}$ on $\mathbb{C} \times \mathbb{C}$ in variables z and w:

$$\Psi_{n,m}(z,w) = \frac{\sigma(nz + mw)}{\sigma(z)^{n^2 - nm}\sigma(z + w)^{nm}\sigma(w)^{m^2 - nm}}$$

- These functions are elliptic in each variable.
- The function is zero if nz + mw = 0.

Elliptic Nets from Elliptic Curves

Theorem (KS)

Let E be an elliptic curve defined over \mathbb{Q} , $\sigma:\mathbb{C}\to\mathbb{C}$ its Weierstrass sigma function, and let $u,v\in\mathbb{C}$ correspond to rational points P,Q on E. Then

$$W(n, m) := \Psi_{n,m}(u, v)$$

forms an elliptic net.

- We call this the elliptic net associated to the curve E and points P, Q.
- We call P, Q the basis of the elliptic net.

Example

	4335	5959	12016	-55287	23921	1587077	-7159461
	94	479	919	-2591	13751	68428	424345
	-31	53	-33	-350	493	6627	48191
	-5	8	-19	-41	-151	989	-1466
↑	1	3	-1	-13	-36	181	-1535
	1	1	2	-5	7	89	-149
O	0	1	1	-3	11	38	249
Q	D				•		

$$E: y^2 + y = x^3 + x^2 - 2x; P = (0,0), Q = (1,0)$$

Primes in an Elliptic Net

	4335	5959	12016	-55287	23921	1587077	_7159461
	94	479	919	-2591	13751	68428	424345
	-31	53	-33	-350	493	6627	48191
	-5	8	-19	-41	-151	989	-1466
↑	1	3	-1	-13	-36	181	-1535
	1	1	2	-5	7	89	-149
$\stackrel{\perp}{O}$	0	1	1	-3	11	38	249
Q	D				•		

$$E: y^2 + y = x^3 + x^2 - 2x; P = (0,0), Q = (1,0)$$

Reduction Modulo p

We wish to show that the elliptic net associated to E, P_1, P_2 reduced modulo a prime p will be the elliptic net associated to the mod-p-reduced curve and points $\widetilde{E}, \widetilde{P}_1, \widetilde{P}_2$.

This requires showing the the net functions $\Psi_{\mathbf{v}}$ can be reduced modulo p. We can obtain a nice polynomial form for them.

1-D Case: Division Polynomials

$$E: y^2 = x^3 + Ax + B, P = (x, y)$$

$$\Psi_1 = 1, \Psi_2 = 2y, \Psi_3 = 3x^4 + 6Ax^2 + 12Bx - A^2,$$

$$\Psi_4 = 4y(x^6 + 5Ax^4 + 20Bx^3 - 5A^2x^2 - 4ABx - 8B^2 - A^3).$$

Net Functions

Theorem (KS)

The net functions $\Psi_{\mathbf{v}}$ can be expressed as polynomials in the ring

$$\mathbb{Z}[A,B]\left[x_1,y_1,x_2,y_2,\frac{1}{x_1-x_2}\right]/\left\langle y_i^2-x_i^3-Ax_i-B\right\rangle_{i=1}^2$$
.

Example

$$\Psi_{2,1} = 2x_1 + x_2 - \left(\frac{y_2 - y_1}{x_2 - x_1}\right)^2, \Psi_{-1,1} = x_1 - x_2,$$

$$\Psi_{2,-1} = (y_1 + y_2)^2 - (2x_1 + x_2)(x_1 - x_2)^2.$$

Reduction Modulo p for Elliptic Nets

Theorem (KS)

Consider points $P_1, P_2 \in E(\mathbb{Q})$ such that the reductions modulo p of the $\pm P_i$ are all distinct and nonzero. Then for each $\mathbf{v} \in \mathbb{Z}^2$ there exists a function $\Omega_{\mathbf{v}}$ such that the following diagram commutes:

$$E^{2}(\mathbb{Q}) \xrightarrow{\Psi_{\mathbf{v}}} \mathbb{P}^{1}(\mathbb{Q})$$

$$\downarrow^{\delta} \qquad \qquad \downarrow^{\delta}$$

$$\widetilde{E}^{2}(\mathbb{F}_{p}) \xrightarrow{\Omega_{\mathbf{v}}} \mathbb{P}^{1}(\mathbb{F}_{p})$$

Furthermore $\operatorname{div}(\Omega_{\mathbf{v}}) = \delta^* \operatorname{div}(\Psi_{\mathbf{v}}).$

Prime Appearance in an Elliptic Net

As in the motivational example,

$$p|W(m,n) \iff mP + nQ \equiv 0 \mod p$$

 The terms of a net divisible by a given prime p form a sublattice of A.

Lesson 2

Elliptic nets calculate the order of points modulo p.

Periodicity Properties

If P is an n-torsion point, W is the elliptic net associated to E, P, then

W(n+k) is not necessarily equal to W(k).

Example

$$E: y^2 + y = x^3 + x^2 - 2x$$
 over \mathbb{F}_5 .

$$P = (0,0)$$
 has order 9.

The associated sequence is

$$0,1,1,2,1,3,4,3,2,0,3,2,1,2,4,3,4,4,0,1,1,2,1,3,4,\dots$$

Periodicity for Elliptic Divisibility Sequences

Theorem (M. Ward, 1948)

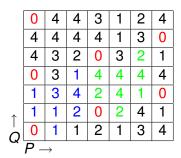
Let W be an elliptic divisibility sequence, and $p \ge 3$ a prime not dividing W(2)W(3). Let r be the least positive integer such that $W(r) \equiv 0 \mod p$. Then there exist integers a, b such that for all n,

$$W(kr+n) \equiv W(n)a^{nk}b^{k^2} \mod p$$
.

Example
$$(E: y^2 + y = x^3 + x^2 - 2x, P = (0,0) \text{ over } \mathbb{F}_5)$$

 $0, 1, 1, 2, 1, 3, 4, 3, 2, 0, 3, 2, 1, 2, 4, 3, 4, 4, 0, 1, 1, 2, 1, 3, 4, \dots$
 $W(9k + n) \equiv W(n)4^{nk}2^{k^2} \mod 5$
 $W(10) \equiv 3W(1) \mod 5$
 $k = 2: W(18 + n) \equiv W(n)4^{2n}2^4 \equiv W(n) \mod 5$

Example of Reduction Mod 5 of an Elliptic Net



The appropriate periodicity property should tell how to obtain the green values from the blue values.

Periodicity for Elliptic Nets

Theorem (KS)

Let W be an elliptic net such that $W(2,0)W(0,2) \neq 0$. Suppose $W(r_1,r_2)$ and $W(s_1,s_2)$ are trivial modulo p. Then there exist integers $a_s,b_s,c_s,a_r,b_r,c_r,d$ such that for all $m,n,k,l \in \mathbb{Z}$,

$$W(kr_1 + ls_1 + m, kr_2 + ls_2 + n)$$

$$\equiv W(m, n)a_r^{km}b_r^{kn}c_r^{k^2}a_s^{lm}b_s^{ln}c_s^{l^2}d^{kl} \mod p$$

Example of Net Periodicity

	0	4	4	3	1	2	4
	4	4	4	4	1	3	0
	4	3	2	0	3	2	1
	0	3	1	4	4	4	4
	1	3	4	2	4	1	0
↑	1	1	2	0	2	4	1
$\frac{1}{2}$	0	1	1	2	1	3	4
G	P -	\rightarrow					

$$a_r=2,b_r=2,c_r=1$$

$$W(5,4) \equiv W(1,2)2^12^21^1 \equiv 3W(1,2) \mod 5$$

The Basis of an Elliptic Net

 If W_i is the elliptic net associated to E, P_i, Q_i for i = 1, 2, and

$$a_1P_1 + b_1Q_1 = a_2P_2 + b_2Q_2$$

then

$$W_1(a_1,b_1)$$
 is not necessarily equal to $W_2(a_2,b_2)$.

- The net is not a function on points of E(K).
- The net is associated to a basis, not a subgroup.
- There is a basis change formula.

Defining a Net on a Free Abelian Cover

• Let K be a finite or number field. Let \hat{E} be any finite rank free abelian group surjecting onto E(K).

$$\pi: \hat{E} \to E(K)$$

- For a basis P_1, P_2 , choose $p_i \in \hat{E}$ such that $\pi(p_i) = P_i$.
- We specify an identification

$$\mathbb{Z}^2\cong\langle p_1,p_2\rangle$$

via $\mathbf{e}_i \mapsto p_i$.

- The elliptic net W associated to E, P₁, P₂ and defined on Z² is now identified with an elliptic net W' defined on Ê.
- This allows us to compare elliptic nets associated to different bases.

Defining a Special Equivalence Class

Definition

Let W_1 , W_2 be elliptic nets. Suppose $\alpha, \beta \in K^*$, and $f : A \to \mathbb{Z}$ is a quadratic form. If

$$W_1(\mathbf{v}) = \alpha \beta^{f(\mathbf{v})} W_2(\mathbf{v})$$

for all \mathbf{v} , then we say W_1 is equivalent to W_2 .

- The basis change formula is an equivalence, when the elliptic nets are viewed as maps on \(\hat{E}\) as explained in the previous slide.
- In this way, we can associate an equivalence class to a subgroup of E(K).

Tate Pairing

Choose $m \in \mathbb{Z}^+$. Let E be an elliptic curve defined over a field K containing the m-th roots of unity. Suppose $P \in E(K)[m]$ and $Q \in E(K)/mE(K)$. Since P is an m-torsion point, $m(P) - m(\mathcal{O})$ is a principal divisor, say $\operatorname{div}(f_P)$. Choose another divisor D_Q defined over K such that $D_Q \sim (Q) - (\mathcal{O})$ and with support disjoint from $\operatorname{div}(f_P)$. Then, we may define the Tate pairing

$$\tau_m : E(K)[m] \times E(K)/mE(K) \rightarrow K^*/(K^*)^m$$

by

$$\tau_m(P,Q) = f_P(D_Q)$$
.

It is well-defined, bilinear and Galois invariant.

Weil Pairing

For $P, Q \in E(\mathbb{Q})[m]$, the more well-known Weil pairing can be computed via two Tate pairings:

$$e_m(P,Q) = \tau_m(P,Q)\tau_m(Q,P)^{-1}$$
.

It is bilinear, alternating, and non-degenerate.

Tate Pairing from Elliptic Nets

Theorem (KS - Lesson 3)

Fix a positive $m \in \mathbb{Z}$. Let E be an elliptic curve defined over a finite field K containing the m-th roots of unity. Let P, $Q \in E(K)$, with $[m]P = \mathcal{O}$. Choose $S \in E(K)$ such that $S \notin \{\mathcal{O}, -Q\}$. Choose $p, q, s \in \hat{E}$ such that $\pi(p) = P$, $\pi(q) = Q$ and $\pi(s) = S$. Let W be an elliptic net associated to a subgroup of E(K) containing P, Q, and S. Then the quantity

$$T_m(P,Q) = \frac{W(s+mp+q)W(s)}{W(s+mp)W(s+q)}$$

is the Tate pairing.

Tate Pairing Governs Periodicity Relations

Choosing W to be the net associated to E, P and letting p = q = s, the periodicity relations give

$$\tau_m(P,P) = \frac{W(m+2)}{W(2)} \frac{W(1)}{W(m+1)}$$
$$= (a^2b)(ab)^{-1} = a$$

So the values needed for the periodicity relations are

$$a = \tau_m(P, P), b^2 = a^m$$

A similar statement holds for elliptic nets in general. The Tate pairing governs the periodicity relations!

Choosing an Elliptic Net

Corollary

Let E be an elliptic curve defined over a finite field K, m a positive integer, $P \in E(K)[m]$ and $Q \in E(K)$. If W_P is the elliptic net associated to E, P, then

$$\tau_m(P,P) = \frac{W_P(m+2)W_P(1)}{W_P(m+1)W_P(2)}$$

Further, if $W_{P,Q}$ is the elliptic net associated to E, P, Q, then

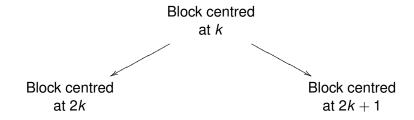
$$\tau_m(P,Q) = \frac{W_{P,Q}(m+1,1)W_{P,Q}(1,0)}{W_{P,Q}(m+1,0)W_{P,Q}(1,1)}.$$

Computing Terms of an Elliptic Net

		(k-1,1)	(k,1)	(k+1,1)			
(k-3,0)	(k-2,0)	(k-1,0)	(k,0)	(k+1,0)	(k+2,0)	(k+3,0)	(k+4,0)

Figure: A block centred at k

Computing Terms of an Elliptic Net



Summary

- The arithmetic of elliptic curves is reflected in elliptic divisibility sequences and more generally in elliptic nets.
- Elliptic nets contain information about group law, reduction modulo p and pairings on the curve.
- Group law, reduction and pairing computations can be done via the recurrence.

For Further Reading I

Mathematical Surveys and Monographs, vol 104. American Mathematical Society, 2003.

M. Ward. Memoir on Elliptic Divisibility Sequences.

American Journal of Mathematics, 70:13-74, 1948.

K. Stange.

The Tate Pairing via Elliptic Nets.

To appear in PAIRING 2007, Springer Lecture Notes in Computer Science.

Slides and Preprint at http://www.math.brown.edu/~stange/