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Elliptic divisibility sequences were first studied by Morgan Ward in 1948 [11]. These are integer
sequences h0, h1, . . . , hn, . . . satisfying the following two properties:

(1) For all positive integers m > n,

hm+nhm−n = hm+1hm−1h
2
n − hn+1hn−1h

2
m . (1)

(2) hn divides hm whenever n divides m.

They have attracted number theoretical and combinatorial interest as some of the simplest non-
linear recurrence sequences (see [3] for references), but for us their interest lives in the underlying
geometry: Ward demonstrates that an elliptic divisibility sequence arises from any choice of elliptic
curve over Q and rational point on that curve.

Theorem 1 (M. Ward, 1948, [11]). Suppose E is an elliptic curve defined over Q, σ : C → C is
its Weierstrass sigma function, and u ∈ C corresponds to a rational point on E. Then there exists
an integer k such that the sequence

hn := kn2−1 σ(nu)
σ(u)n2

forms an elliptic divisibility sequence.

The recurrence sequence reflects the behaviour of a point under multiplication; it provides access
to information about [n]P via a recurrence relation instead of direct curve computations. Indeed,
Rachel Shipsey used this idea to solve the elliptic curve discrete logarithm problem in certain
situations [6], while Mohamad Ayad used it to develop methods of finding integer points on elliptic
curves of rank one [1]. To fully exploit this paradigm, then, it is desirable to extend to additions
in general. Is there a multidimensional version of the sequences “reflecting” all the possible linear
combinations

[n1]P1 + . . . + [nk]Pk ?

To accomplish this, in place of sequences we will define elliptic nets.

Definition 1. Let A be a finitely generated free abelian group, and R be an integral domain. An
elliptic net is any map W : A → R such that the following recurrence holds for all p, q, r, s ∈ A.

W (p + q + s)W (p− q)W (r + s)W (r)

+ W (q + r + s)W (q − r)W (p + s)W (p)

+ W (r + p + s)W (r − p)W (q + s)W (q) = 0 (2)

We say W is normalised if A = Zn and W (z) = 1 whenever z = ei or z = ei +ej with i 6= j (where
ei are the standard basis vectors).
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P →
Q
↑

0 1 1 -3 11 38 249
1 1 2 -5 7 89 -149
1 3 -1 -13 -36 181 -1535
-5 8 -19 -41 -151 989 -1466
-31 53 -33 -350 493 6627 48191
94 479 919 -2591 13751 68428 424345
4335 5959 12016 -55287 23921 1587077 -7159461

P →
Q
↑

over F5over Q
0 1 1 2 1 3 4
1 1 2 0 2 4 1
1 3 4 2 4 1 0
0 3 1 4 4 4 4
4 3 2 0 3 2 1
4 4 4 4 1 3 0
0 4 4 3 1 2 4

Figure 1. A portion of the elliptic net of E : y2 + y = x3 + x2 − 2x, P = (0, 0), Q = (1, 0).

Elliptic nets have the symmetry property that W (−z) = −W (z) for any z ∈ A (and in particular
W (0) = 0). When A = R = Z and W (1) = 1, the positive terms of an elliptic net satisfy Ward’s
equation (1) above. Under the further condition that W (2)|W (4), these terms form an elliptic
divisibility sequence.

Christine Swart studied a general class of Somos-4 sequences arising from elliptic curves and
including elliptic divisibility sequences [9]. Her work, and related work of van der Poorten [10],
provided the clues that the more general theory of nets existed. It has recently come to my attention
that the possibility of such a definition was briefly discussed in correspondence by Noam Elkies,
James Propp and Michael Somos in 2001 [5].

To extend Ward’s Theorem 1 to the elliptic net case (with R = C), we define appropriate
multi-elliptic functions and show that they satisfy the recurrence (2).

Definition 2. Fix a lattice Λ ∈ C corresponding to an elliptic curve E. For v = (v1, . . . , vn) ∈ Zn,
define a function Ψv on Cn in variables z = (z1, . . . , zn) as follows:

Ψv(z; Λ) =
σ(v1z1 + . . . + vnzn; Λ)

n∏
i=1

σ(zi; Λ)2v2
i −
Pn

j=1 vivj
∏

1≤k<j≤n

σ(zi + zj ; Λ)vivj

In particular, we have for each k ∈ Z, a function Ψk on C in the variable z:

Ψk(z; Λ) =
σ(kz; Λ)
σ(z; Λ)k2

and for each pair (k, l) ∈ Z× Z, a function Ψk,l on C× C in variables z and w:

Ψk,l(z, w; Λ) =
σ(kz + lw; Λ)

σ(z; Λ)k2−klσ(z + w; Λ)klσ(w; Λ)l2−kl

These functions are elliptic in each variable.
We will now see that the Ψv form an elliptic net as a function of v ∈ Zn when z ∈ Cn and the

lattice Λ are fixed. Denote by π : C → C/Λ the complex uniformisation of an elliptic curve. Then
for any number field L ⊂ C, define the free abelian group ÊL = π−1(E(L)). As a means of fixing
z, we specify a homomorphism φ : Zn → ÊL.

Definition 3. Suppose φ : Zn → ÊL is a homomorphism such that the images of ±ei under π ◦ φ
are all distinct. Define Wφ : Zn → C by

Wφ(v) = Ψv(φ(e1), φ(e2), . . . , φ(en); Λ)

Theorem 2. Wφ : Zn → L is an elliptic net.
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In this way, we can associate an elliptic net to any choice of n points Pi ∈ E(L) which, along
with their negatives, are all distinct. We call Wφ the elliptic net associated to E,P1, . . . , Pn. A
portion of such an example net is shown in Figure 1.

It can be shown that all normalised elliptic nets with R = C arise in this manner. In fact, the
curve and points concerned can be calculated explicitly.

To extend to curves defined over other fields, it is necessary to remove the dependence on
the complex analytic definition. The functions Ψv may be written as rational functions in the
coordinates xi = ℘(Pi), yi = ℘′(Pi). In the case of elliptic divisibility sequences, these are exactly
the so-called division polynomials. In the more general case, we have the following theorem:

Theorem 3. Let n ≥ 1. Consider an elliptic curve E : y2 = x3 +Ax+B over C. Let pi : En → E
be projection maps and s : En → E the summation. Let

U = En\

 n⋃
k=1

p∗k(O)
⋃

1≤k<j≤n

(p∗k × p∗j )s
∗(O)

 .

The Ψv associated to E are regular on U and are in the subring

Z[A,B][xi, yi]ni=1

[
(xi − xj)−1

]
1≤i<j≤n

/ 〈
y2

i − x3
i −Axi −B

〉n

i=1
⊂ OEn(U) .

The geometric content of the theorem is that there are functions defined on UZ whose restrictions
to U are the Ψv.

In particular, we may define elliptic nets over finite fields. It remains to examine the relationship
between the elliptic net of a curve over a number field and its reduction modulo a prime.

Let E be an elliptic curve over a number field L ⊂ C with ring of integers R. Let p be a prime of
good reduction for an elliptic curve E and let δ denote both the reduction modulo p on the curve
E and on the ring of integers R.

Theorem 4. Consider points P1, . . . , Pn ∈ E(L) such that the reductions modulo p of the ±Pi are
all distinct and nonzero. Then for each v ∈ Z there exists a function Ωv such that the following
diagram commutes:

En
L(R)

Ψv //

δ
��

P1(L)

δ
��

En
kp

(kp)
Ωv // P1(kp)

Furthermore div(Ωv) = δ∗ div(Ψv).

Figure 1 illustrates the relationship between an example elliptic net associated to E,P,Q over Q
and the elliptic net associated to their reductions Ẽ, P̃ , Q̃ modulo 5. The order of Q̃ in this example
is 3, but if we let W be the elliptic divisibility sequence associted to Ẽ, Q̃, then W (4) 6≡ W (1)
mod p. The exact relationship is given by the “periodicity properties” of elliptic nets. For the case
of elliptic divisibility sequences it has a particularly simple statement:

Theorem 5 (M. Ward, 1948, [11]). Let W is an elliptic divisibility sequence, and p ≥ 3 a prime
not dividing W (2)W (3). Let r be the least positive integer such that W (r) = 0. Then there exist
integers a, b such that for all n,

W (kr + n) ≡ W (n)ankbk2
mod p .
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In the case of elliptic nets in general, the periodicity properties relate to the Tate pairing. Choose
m ∈ Z+. Let E be an elliptic curve defined over a field K containing the m-th roots of unity.
Suppose P ∈ E(K)[m] and Q ∈ E(K)/mE(K). Since P is an m-torsion point, m(P )−m(O) is a
principal divisor, say div(fP ). Choose another divisor DQ defined over K such that DQ ∼ (Q)−(O)
and with support disjoint from div(fP ). Then, we may define the Tate pairing

τm : E(K)[m]× E(K)/mE(K) → K∗/(K∗)m

by
τm(P,Q) = fP (DQ)

This pairing is well-defined, bilinear and Galois invariant. The well-known Weil pairing em

satisfies em(P,Q) = τm(P,Q)/τm(Q,P ). The Tate pairing is commonly used in implementations
of pairing-based elliptic curve cryptography. In this case, it is usually considered over finite fields,
where it is non-degenerate. For details, see [2, 4].

The following theorem is example of the computation of the Tate pairing using an elliptic net.

Theorem 6. Let E be an elliptic curve defined over a finite field K, m a positive integer, P ∈
E(K)[m] and Q ∈ E(K). If W is the elliptic net associated to E,P, Q, then we have

τm(P,Q) =
W (m + 1, 1)W (1, 0)
W (m + 1, 0)W (1, 1)

There are methods of computing terms of elliptic nets which allow one to compute this value in
log(m) time. This method may also be used to compute the Weil pairing. For further details and
more such theorems see [7] and [8].

Other work in progress includes extending the work of Ayad [1] for finding integer points on
curves of higher rank.
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