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A Question

For any integer sequence A = (An)n≥1 we define the index
divisibility set of A to be

S(A) =
{

n ≥ 1 : n | An
}
.

Ex: S(A) for An = bn − b are pseudoprimes to the base b.

Make it a directed graph: S(A) are vertices and n→ m if and
only if

1. n | m with n < m.
2. If k ∈ S(A) satisfies n | k | m, then k = n or k = m.
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A Theorem of Smyth
Theorem (Smyth)
Let a,b ∈ Z, and let L = (Ln)n≥1 be the associated Lucas
sequence of the first kind, i.e.,

Ln+2 = aLn+1 − bLn, L0 = 0, L1 = 1.

Let δ = a2 − 4b and let n ∈ S(L) be a vertex. Then the arrows
originating at n are

{n→ np : p is prime and p | Lnδ} ∪ Ba,b,n,

where

Ba,b,n =


{n→ 6n} if (a,b) ≡ (3,±1) (mod 6), (6,Ln) = 1,
{n→ 12n} if (a,b) ≡ (±1,1) (mod 6), (6,Ln) = 1,
∅ otherwise.
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Elliptic divisibility sequences

Definition
Let E/Q be an elliptic curve and let P ∈ E(Q) be a nontorsion
point.

E : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6, P = (x , y)

The elliptic divisibility sequence (EDS) associated to the
pair (E ,P) is the sequence of positive integers Dn for n ≥ 1
determined by

x
(
[n]P

)
=

An

D2
n
∈ Q

as a fraction in lowest terms.
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Index divisibility for EDS

Theorem
Let D be a minimal regular EDS associated to the elliptic curve
E/Q and point P ∈ E(Q).

1. If n ∈ S(D) and p is prime and p | Dn, then
(n→ np) ∈ Arrow(D).

2. If n ∈ S(D) and d is an aliquot number for D and
gcd(n,d) = 1, then (n→ nd) ∈ Arrow(D).

3. If p ≥ 7 is a prime of good reduction for E and if
(n→ np) ∈ Arrow(D), then either p | Dn or p is an aliquot
number for D.

4. If gcd(n,d) = 1 and if (n→ nd) ∈ Arrow(D) and
if d = p1p2 · · · p` is a product of ` ≥ 2 distinct primes of
good reduction for E satisfying min pi > (2−1/2` − 1)−2,
then d is an aliquot number for D.
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Aliquot Number

Definition
Let Dn be an EDS associated to the elliptic curve E . If the
list p1, . . . ,p` of distinct primes of good reduction for E satisfies

pi+1 = min{r ≥ 1 : pi | Dr} for all 1 ≤ i ≤ `,

(define p`+1 = p1), then p1 · · · p` is an aliquot number.

Fact
p | Dn if and only if [n]P = O (mod p).

• So, if #E(Fpi ) = pi+1 for each i , then the definition is
satisfied.

• An anomalous prime (#E(Fp) = p) is an aliquot number.
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Amicable Pairs
Definition
Let E be an elliptic curve defined over Q. A pair (p,q) of primes
is called an amicable pair for E if

#E(Fp) = q, and #E(Fq) = p.

Example
y2 + y = x3 − x has one amicable pair with p,q < 107:

(1622311,1622471)

y2 + y = x3 + x2 has four amicable pairs with p,q < 107:

(853,883), (77761,77999),

(1147339,1148359), (1447429,1447561).
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Hasse Interval

Theorem (Hasse)
Let E/Fp be an elliptic curve defined over a finite field. Define
the trace of Frobenius to be

ap = p + 1−#E(Fp).

Then
|ap| ≤ 2

√
p

• A theorem of Deuring says every value in this Hasse
interval is attained as ap for some E .

• The Sato-Tate conjecture governs the distribution of ap
within the Hasse interval.
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Questions

Question (1)
Let

QE (X ) = #
{

amicable pairs (p,q) such that p,q < X
}

How does QE (X ) grow with X?

Question (2)
Let

NE (X ) = #
{

primes p ≤ X such that #E(Fp) is prime
}

What about QE (X )/NE (X )?
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NE(X )

Let E/Q be an elliptic curve, and let

NE (X ) = #
{

primes p ≤ X such that #E(Fp) is prime
}
.

Conjecture (Koblitz, Zywina)
There is a constant CE/Q such that

NE (X ) ∼ CE/Q
X

(log X )2 .

Further, CE/Q > 0 if and only if there are infinitely many
primes p such that #Ep(Fp) is prime.

CE/Q can be zero (e.g. if E/Q has rational torsion).
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Heuristic

Prob(p is part of an amicable pair)

= Prob
(

q def
= #E(Fp) is prime and #E(Fq) = p

)
= Prob(q def

= #E(Fp) is prime) Prob(#E(Fq) = p).

Conjecture of Koblitz and Zywina says that

Prob(#E(Fp) is prime)�� 1
log p

,

Rough estimate using Sato–Tate conjecture (for non-CM):

Prob(#E(Fq) = p)�� 1
√

q
∼ 1
√

p
.

Together:

Prob(p is part of an amicable pair)�� 1
√

p(log p)
.
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Growth of QE(X )

QE (X ) ≈
∑
p≤X

Prob(p is the smaller prime in an amicable pair )

��
∑
p≤X

1
√

p(log p)
.

Use the rough approximation

∑
p≤X

f (X ) ≈
∑

n≤X/ log X

f (n log n) ≈
∫ X/ log X

f (t log t) dt ≈
∫ X

f (u)
du

log u

to obtain

QE (X )��
∫ X 1√

u log u
· du

log u
��

√
X

(log X )2 .
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Conjectures

Conjecture (Version 1)
Let E/Q be an elliptic curve, let

QE (X ) = #
{

amicable pairs (p,q) such that p,q < X
}

Assume infinitely many primes p such that #E(Fp) is prime.

Then
QE (X )��

√
X

(log X )2 as X →∞,

where the implied constants depend on E.
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Data agreement...?

X Q(X ) Q(X )
/ √

X
(log X)2

logQ(X)
log X

106 2 0.382 0.050
107 4 0.329 0.086
108 5 0.170 0.087
109 10 0.136 0.111
1010 21 0.111 0.132
1011 59 0.120 0.161
1012 117 0.089 0.172

Table: Counting amicable pairs for y2 + y = x3 + x2 (thanks to
Andrew Sutherland with smalljac)
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Another example

y2 + y = x3 − x has one amicable pair with p,q < 107:

(1622311,1622471)

y2 + y = x3 + x2 has four amicable pairs with p,q < 107:

(853,883), (77761,77999),

(1147339,1148359), (1447429,1447561).

y2 = x3 + 2 has 5578 amicable pairs with p,q < 107:

(13,19), (139,163), (541,571), (613,661), (757,787), . . . .



Motivations Definitions and growth rates The CM case Aliquot cycles The j = 0 case Final remarks / Further Ideas

Complex Multiplication

Let E/Q be an elliptic curve.

The endomorphism ring End(E) is usually isomorphic to Z
(consisting of multiplication-by-m for all m).

Otherwise, End(E) ∼= O where O is an order of class number 1
in a quadratic imaginary number field.
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CM case: Twist Theorem

Theorem
Let E/Q be an elliptic curve with complex multiplication by an
order O in a quadratic imaginary field K = Q(

√
−D), with

jE 6= 0. Suppose that p and q are primes of good reduction
for E with p ≥ 5 and q = #E(Fp).

Then either

#E(Fq) = p or #E(Fq) = 2q + 2− p.

Remark: In the latter case, #Ẽ(Fq) = p for the non-trivial
quadratic twist Ẽ of E over Fq.
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CM case: Twist Theorem proof
1. Eliminating curves with 2-torsion leaves D ≡ 3 mod 4.

2. p splits as p = pp (if it were inert, we would have
supersingular reduction, #E(Fp) = p + 1)

3. #E(Fp) = N(Ψ(p)) + 1− Tr(Ψ(p)) where Ψ is the
Grössencharacter of E .

4. N(1−Ψ(p)) = #E(Fp) = #E(Fp) = q so q splits as q = qq.

5. N(Ψ(q)) = q.

6. So 1−Ψ(p) = uΨ(q) for some unit u ∈ {±1}.

7. Tr(Ψ(q)) = ±Tr(1−Ψ(p)) = ±(2−Tr(Ψ(p))) = ±(q + 1− p).
So...

#E(Fq) = p or #E(Fq) = 2q + 2− p.
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Pairs on CM curves
(D, f ) (3,3) (11,1) (19,1) (43,1) (67,1) (163,1)

X = 104 18 8 17 42 48 66

X = 105 124 48 103 205 245 395

X = 106 804 303 709 1330 1671 2709

X = 107 5581 2267 5026 9353 12190 19691

Table: QE (X ) for elliptic curves with CM

(D, f ) (3,3) (11,1) (19,1) (43,1) (67,1) (163,1)

X = 104 0.217 0.250 0.233 0.300 0.247 0.237

X = 105 0.251 0.238 0.248 0.260 0.238 0.246

X = 106 0.250 0.247 0.253 0.255 0.245 0.247

X = 107 0.249 0.251 0.250 0.251 0.250 0.252

Table: QE (X )/NE (X ) for elliptic curves with CM
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Conjectures
Conjecture (Version 2)
Let E/Q be an elliptic curve, let

QE (X ) = #
{

amicable pairs (p,q) such that p,q < X
}

Assume infinitely many primes p such that #E(Fp) is prime.

(a) If E does not have complex multiplication, then

QE (X )��
√

X
(log X )2 as X →∞,

where the implied constants depend on E.

(b) If E has complex multiplication, then there is a
constant AE > 0 such that

QE (X ) ∼ 1
4
NE (X ) ∼ AE

X
(log X )2 .



Motivations Definitions and growth rates The CM case Aliquot cycles The j = 0 case Final remarks / Further Ideas

Aliquot cycles
Definition
Let E/Q be an elliptic curve. An aliquot cycle of length `
for E/Q is a sequence of distinct primes (p1,p2, . . . ,p`) such
that E has good reduction at every pi and such that

#E(Fp1) = p2, #E(Fp2) = p3, . . .

#E(Fp`−1) = p`, #E(Fp`
) = p1.

Example
y2 = x3 − 25x − 8 : (83,79,73)

E : y2 = x3 + 176209333661915432764478x+

60625229794681596832262 :

(23,31,41,47,59,67,73,79,71,61,53,43,37,29)
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Constructing aliquot cycles with CRT
Fix ` and let p1,p2, . . . ,p` be a sequence of primes such that

|pi + 1− pi+1| ≤ 2
√

pi for all 1 ≤ i ≤ `,

where by convention we set p`+1 = p1. For each pi find (by
Deuring) an elliptic curve Ei/Fpi satisfying

#Ei(Fpi ) = pi+1.

Use the Chinese remainder theorem on the coefficients of the
Weierstrass equations for E1, . . . ,E` to find an elliptic
curve E/Q satisfying

E mod pi
∼= Ei for all 1 ≤ i ≤ `.

Then by construction, the sequence (p1, . . . ,p`) is an aliquot
cycle of length ` for E/Q.
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No longer aliquot cycles in CM case

Theorem
A CM elliptic curve E/Q with j(E) 6= 0 has no aliquot cycles of
length ` ≥ 3 consisting of primes p ≥ 5.
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No longer aliquot cycles – proof

Let (p1,p2, . . . ,p`) be an aliquot cycle of length ` ≥ 3, with
pi ≥ 3. We must have

pi = 2pi−1 + 2− pi−2 for 3 ≤ i ≤ `,

p1 = 2p` + 2− p`−1.

Determining the general term for the recursion, we get

p`+1 = `p2 − (`− 1)p1 + `(`− 1).

p1 = p`+1 =⇒ p1 = p2 + `− 1.

Cyclically permuting the cycle gives

pi = pi+1 + `− 1 for all 1 ≤ i ≤ `,

where we set p`+1 = p1. So pi > pi+1 for all 1 ≤ i ≤ ` and
p` > p1. Contradiction!
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A little review of K = Q(
√
−3).

K = Q(
√
−3), ω =

1 +
√
−3

2
.

Ring of integers: OK = Z[ω].

Units: O∗K = µ6 = {1, ω, ω2, . . . , ω5} (ω6 = 1)

The map
O∗K → (OK/3OK )∗

is an isomorphism.

Let p be a prime of OK relatively prime to 3. For α ∈ OK \ p, the
sextic residue symbol is defined by(

α

p

)
6
∈ µ6,

(
α

p

)
6
≡ α

1
6 (NK/Q(p)−1) mod p.
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CM j = 0 case: Twist Theorem

Theorem
Let E/Q be the elliptic curve y2 = x3 + k, and suppose that p
and q are primes of good reduction for E with p ≥ 5
and q = #E(Fp). Then p splits in K , and we write pOK = pp.
Define q =

(
1−Ψ(p)

)
OK . Then we have qOK = qq.

The values of the Grössencharacter at p and q are related by

1−Ψ(p) =

(
4k
p

)
6

(
4k
q

)
6

Ψ(q).

Finally, #E(Fq) = p if and only if
(

4k
p

)
6

(
4k
q

)
6

= 1.
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Remarks on Twist Theorem

The values of the Grössencharacter at p and q are related by

1−Ψ(p) =

(
4k
p

)
6

(
4k
q

)
6

Ψ(q).

Remark 1: Each value of
(

4k
p

)
6

(
4k
q

)
6
∈ µ6 corresponds to an

isomorphism class of sextic twists E ′ of E over Fq for which
#E ′(Fq) = p. There are six possible values of #E(Fq).

Remark 2: Proof much as before, using the fact that

Ψ(p) ≡
(

4k
p

)−1

6
mod 3OK
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Data on twist frequencies

k 2 3 5 6 7 10

X = 104 0.217 0.141 0.097 0.085 0.165 0.118

X = 105 0.251 0.122 0.081 0.134 0.139 0.125

X = 106 0.250 0.139 0.083 0.142 0.133 0.107

X = 107 0.249 0.139 0.082 0.139 0.129 0.107

Table: QE (X )/NE (X ) for elliptic curves y2 = x3 + k

1/12 = 0.08333 . . .
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Data on twist frequencies

k Np(X ) I (1) II (-1) III IV V VI

2 22314 0.5001 0.4999 0.0000 0.0000 0.0000 0.0000
3 22630 0.2795 0.2766 0.1144 0.1093 0.1103 0.1099
5 23463 0.1644 0.1679 0.1663 0.1690 0.1660 0.1663
7 22364 0.2584 0.2602 0.1192 0.1214 0.1206 0.1202

11 22390 0.1988 0.1952 0.1499 0.1530 0.1538 0.1492
13 22242 0.1629 0.1655 0.1646 0.1677 0.1668 0.1724
17 22289 0.1909 0.1876 0.1571 0.1556 0.1545 0.1543
19 22207 0.1931 0.1853 0.1553 0.1565 0.1517 0.1581
23 22251 0.1751 0.1828 0.1631 0.1600 0.1596 0.1594
29 22478 0.1627 0.1684 0.1679 0.1668 0.1669 0.1672

Table: Distribution of primes p ≤ 107 of Types I–VI for y2 = x3 + k
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Cubic reciprocity in K = Q(
√
−3).

K = Q(
√
−3), ω =

1 +
√
−3

2
, OK = Z[ω],

O∗K = {1, ω, ω2, . . . , ω5}.

Cubic Reciprocity in OK :
For α, β ∈ OK primary primes, i.e. α, β ≡ 1,2 mod 3OK ,(

α

β

)
3

(
β

α

)
3

= 1

Quadratic Reciprocity in Z:
For p,q ∈ Z primary primes, i.e. p,q ≡ 1 mod 4, i.e.
(−3,5,−7,−11,13, . . .),(

p
q

)
2

(
q
p

)
2

= 1
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Applying Cubic Reciprocity

Let E be the curve y2 = x3 + k and suppose #Ẽp(Fp) is prime.(
4k

ΨE (p)

)
6

(
4k

1−ΨE (p)

)
6

= · · ·

= ±
(

ΨE (p)(1−ΨE (p))

k

)−1

3
.

Let Mk be the set of elements m in OK/kOK for which
m(1−m) is invertible.
Let M∗k be the set of those also satisfying

(
m(1−m)

k

)
3

= 1.
Then we may expect

QE (X )/NE (X )→ #M∗k/4#Mk .
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The symbol
(

m(1−m)
k

)
3

when k ≡ 2 mod 3 is prime

The curve E : y(1− y) = x3 has j = 0.

Then E is supersingular modulo k and has (k + 1)2 points over
FkOK = Fk2 .

Removing 3 points (∞, (0,0) and (0,1)), the remaining points
have y 6= 0,1 and

(
y(1−y)

k

)
3

= 1.

Therefore, ((k + 1)2 − 3)/3 is the number of residues m 6= 0,1
modulo kOK having

(
m(1−m)

k

)
3

= 1.

Therefore, Mk = k − 1 and M∗k = ((k + 1)2 − 3)/3.
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Sadly...

It’s much more complicated than that...

Sometimes Ψ(p) avoids quadratic or cubic residues.

We have to break up cases according k (mod 36). (In the case
of k ≡ 11,23 mod 36, the previous analysis works.)

We have to move to point counting on Jacobians of curves

γzn(1− γzn) = δx3

for n = 1,2,3,6.

And when k splits it’s (complicated)2.

And if k isn’t prime . . .
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Conjecture for j = 0

Let k ∈ Z satisfy gcd(6, k) = 1.

Sk =

{
m ∈ OK

kOK
: gcd

(
m(1−m), kOK

)
= 1

}
.

(a) k ≡ 1 (mod 4) and k
pr
≡ ±1 (mod 9)

Mk =
{

m ∈ Sk :
(m

k

)
2

= −1 and
(m

k

)
3
6= 1

}
.

(b) k ≡ 1 (mod 4) and k 6
pr
≡ ±1 (mod 9)

Mk =
{

m ∈ Sk :
(m

k

)
2

= −1
}
.
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Conjecture for j = 0

(c) k ≡ 3 (mod 4) and k
pr
≡ ±1 (mod 9)

Mk =
{

m ∈ Sk :
(m

k

)
3
6= 1

}
.

(d) k ≡ 3 (mod 4) and k 6
pr
≡ ±1 (mod 9)

Mk = Sk .

Further, for every k we define a subset of Mk by

M∗k =

{
m ∈ Mk :

(
m(1−m)

k

)
3

= 1
}
.
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Conjecture for j = 0

Conjecture
Let k ∈ be an integer satisfying gcd(6, k) = 1. Then

lim
X→∞

Qk (X )

Nk (X )
=

#M∗k
4#Mk

. (1)
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Conjecture for j = 0 with k prime

lim
X→∞

Qk (X )

Nk (X )
=

1
6

+
1
2

R(k),

where R(k) depends on k (mod 36) and is given by:

k mod 36 R(k)

1, 19
2

3(k − 3)

13, 25 0

7, 31
2k

3(k − 2)2

k mod 36 R(k)

17, 35
2

3(k − 1)

5, 29 0

11, 23
2k

3(k2 − 2)
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Data for j = 0 as k varies
Density of Type I/II

k Qk (X) N (1)
k (X) Nk (X) Q/N (1) exper’t conjecture

5 (b.2) 29340 58594 175703 0.251 0.3335 1
3 = 0.3333

7 (d.1) 43992 87825 168743 0.251 0.5205 13
25 = 0.5200

11 (d.2) 33721 66698 169062 0.253 0.3945 47
119 = 0.3950

13 (b.1) 28036 55766 167333 0.252 0.3333 1
3 = 0.3333

17 (a.2) 32008 63810 169226 0.251 0.3771 3
8 = 0.3750

19 (c.1) 31729 63066 168196 0.252 0.3750 3
8 = 0.3750

23 (d.2) 30480 61210 168512 0.249 0.3632 191
527 = 0.3624

29 (b.2) 28085 56286 168642 0.249 0.3338 1
3 = 0.3333

31 (d.1) 30301 60349 168344 0.251 0.3585 301
841 = 0.3579

37 (a.1) 29728 59430 168471 0.250 0.3528 6
17 = 0.3529

41 (b.2) 28050 56381 168567 0.249 0.3345 1
3 = 0.3333

43 (d.1) 29619 58807 168410 0.252 0.3492 589
1681 = 0.3504

47 (d.2) 29220 58400 168365 0.250 0.3469 767
2207 = 0.3475

53 (a.2) 29278 58257 168353 0.252 0.3460 9
26 = 0.3462

59 (d.2) 29378 58422 168783 0.252 0.3461 1199
3479 = 0.3446

61 (b.1) 28027 55816 168197 0.251 0.3318 1
3 = 0.3333

67 (d.1) 29242 57944 168239 0.253 0.3444 1453
4225 = 0.3439

71 (c.2) 28789 57661 168508 0.249 0.3422 12
35 = 0.3429

Table: Density of Amicable and Type I/II primes with p ≤ X = 108 for
the curve y2 = x3 + k , prime k .
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Final Remarks / Further Ideas
1. The predictions, even for the very complicated cases, are coming
out to quadratic polynomials in k . In other words, all the point
counting and traces of Frobenius cancel! We don’t have a simple
explanation for this. Questions: Can Sage do these computations?
Can doing these computations in Sage provide any insight? Are there
other approaches to counting residues m modulo k satisfying(

f (m)
k

)
6

= 1 for a fixed polynomial f?

2. One might look at this as a dynamical system: iterating
f (p) = #E(Fp). Only what if f (p) is composite? One idea: defining an
as in the L-series L(E/Q, s) =

∑
n≥1 an/ns, and set f (n) = n + 1− an

(H. Sahinoglu). Other ideas?

3. If p is anomalous for E , then E(Fp) has special properties
(anomalous ECDLP attack). What if (p,q) is an amicable pair?

4. Are there fast ways to search for or construct amicable pairs or
aliquot cycles?
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Appendix: CM curves used in data

(D, f ) = (3,3) y2 = x3 − 120x + 506,

(D, f ) = (11,1) y2 + y = x3 − x2 − 7x + 10,

(D, f ) = (19,1) y2 + y = x3 − 38x + 90,

(D, f ) = (43,1) y2 + y = x3 − 860x + 9707,

(D, f ) = (67,1) y2 + y = x3 − 7370x + 243528,

(D, f ) = (163,1) y2 + y = x3 − 2174420x + 1234136692.
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A lemma

Lemma
Let k, E, p, q, p, and q be as above. Then(

4
Ψ(p)

)
6

(
4

1−Ψ(p)

)
6

= 1.
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Proof of lemma

Proof.
Check that w(1− w) ≡ 1 mod 3OK whenever
w ,1− w ∈ (OK/3OK )∗. Choose u ∈ µ6 such that
2,uΨ(p),u−1(1−Ψ(p)) are primary.(

2
ψE (p)

)
3

(
2

1− ψE (p)

)
3

=

(
2

uψE (p)

)
3

(
2

u−1(1− ψE (p))

)
3

=

(
uψE (p)

2

)
3

(
u−1(1− ψE (p))

2

)
3

=

(
ψE (p)(1−Ψ(p))

2

)
3
.

And w(1− w) ≡ 1 mod 2OK
whenever w ,1− w ∈ (OK/2OK )∗.
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Applying Cubic Reciprocity
Let E be the curve y2 = x3 + k and suppose #Ẽp(Fp) is prime.(

4k
ΨE (p)

)
6

(
4k

1−ΨE (p)

)
6

=

(
4

ΨE (p)

)
6

(
4

1−ΨE (p)

)
6

(
k

ΨE (p)

)
6

(
k

1−ΨE (p)

)
6

=

(
k

ΨE (p)

)
6

(
k

1−ΨE (p)

)
6

=

(
k

ΨE (p)

)
2

(
k

1−ΨE (p)

)
2

(
k

ΨE (p)

)−1

3

(
k

1−ΨE (p)

)−1

3

= ±
(

k
ΨE (p)

)−1

3

(
k

1−ΨE (p)

)−1

3

= ±
(

ΨE (p)(1−ΨE (p))

k

)−1

3
.
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