Factoring using multiplicative relations modulo n : a subexponential algorithm inspired by the index calculus

Katherine E. Stange

MathCrypt, August 19th, 2023

Factoring

Well-known problems that are equivalent to factoring n :

1. Finding the Euler totient $\varphi(n)$
2. finding the order of elements $g \in(\mathbb{Z} / n \mathbb{Z})^{*}$ (under ERH; Miller, Shor, Ekerå)

Multiplicative relations modulo n

Factor base \mathscr{B} of b residues a_{1}, \ldots, a_{b} modulo n
Multiplicative relations:

$$
\prod_{i=1}^{b} a_{i}^{f_{i}}=1
$$

Lattice of exponent vectors:

$$
\Lambda_{\mathscr{B}}=\left\{\mathbf{f}=\left(f_{i}\right)_{i=1}^{b}: \prod_{i=1}^{b} a_{i}^{f_{i}}=1\right\} \subseteq \mathbb{Z}^{b}
$$

If the residues generate $(\mathbb{Z} / n \mathbb{Z})^{*}$, then $\Lambda_{\mathscr{B}}$ will have covolume equal to $\varphi(n)$.
The restriction $\left.\Lambda_{\mathscr{B}}\right|_{S_{i}}$ of $\Lambda_{\mathscr{B}}$ to i-th coordinate axis S_{i} has covolume $=\operatorname{ord}\left(a_{i}\right)$.
Equivalently, any generating set for $\left.\Lambda_{\mathscr{B}}\right|_{s_{i}}$ will be $\left\{d_{j} \mathbf{e}_{i}\right\}_{j}$ where $\operatorname{gcd}\left(d_{j}\right)=\operatorname{ord}\left(a_{i}\right)$.

Main idea

If we can find a generating set for $\left.\Lambda_{\mathscr{B}}\right|_{S_{i}}$, we have found $\operatorname{ord}\left(a_{i}\right)$.
And therefore, we factor n.
Approach:

- collect multiplicative relations modulo n, i.e. elements of $\Lambda_{\mathscr{B}} \subseteq \mathbb{Z}^{b}$
- do linear algebra to obtain elements of $\left.\Lambda_{\mathscr{B}}\right|_{S_{i}} \subseteq \mathbb{Z}$

Index Calculus vs. Factoring

Index Calculus $g^{x} \equiv b(\bmod p)$
Factor base:

$$
p_{1}, p_{2}, \ldots, p_{b}
$$

Find relations (random x):

$$
g^{x}=\prod_{i=1}^{b} p_{i}^{f_{i}}(\bmod p),
$$

Linear algebra:

$$
x \log (g)=\sum_{i=1}^{b} f_{i} \log \left(p_{i}\right)(\bmod p-1)
$$

Factoring n
Factor base:

$$
p_{1}, p_{2}, \ldots, p_{b}
$$

Find relations (random x):

$$
g^{x}=\prod_{i=1}^{b} p_{i}^{f_{i}}(\bmod n),
$$

Linear algebra:

$$
x \log (g)=\sum_{i=1}^{b} f_{i} \log \left(p_{i}\right)(\bmod \varphi(n))
$$

From multiplicative relations to multiplicative order

Let \mathscr{O} be an oracle that provides multiplicative relations modulo n, of length $O(\log n)$ amongst a factor base \mathscr{B}.

Theorem

Under the existence of \mathfrak{O} :

- there is a Las Vegas algorithm to find the multiplicative order of residues modulo n
- with runtime polynomial in $|\mathscr{B}|$ and $\log n$;
- with $|\mathscr{B}|+c=O(|\mathscr{B}|)$ calls to \mathscr{O};
- and under the Main Hypothesis ${ }^{1}$, the probability of success approaches $1-1 / \zeta(c+1)$.

[^0]
Algorithm

1. Collect multiplicative relations:

$$
g^{x_{j}}=\prod_{i=1}^{b} p_{i}^{f_{j, i}}(\bmod n)
$$

2. Find relations \mathbf{b}_{t} between $\mathbf{f}_{j}=\left(f_{j, i}\right)_{i}$ in \mathbb{Z} :

$$
\sum_{j=1}^{b+c}\left(\mathbf{b}_{t}\right)_{j} \mathbf{f}_{j}=0
$$

3. Compute α_{t} :

$$
\alpha_{t}:=\sum_{j=1}^{b+c}\left(\mathbf{b}_{t}\right)_{j} x_{j} .
$$

4. Take $\operatorname{gcd}\left(\alpha_{t}\right)$.

Correctness

$$
g^{x_{j}}=\prod_{i=1}^{b} p_{i}^{f_{j, i}}(\bmod n), \quad \sum_{j=1}^{b+c}\left(\mathbf{b}_{t}\right)_{j} \mathbf{f}_{j}=0
$$

implies that

$$
\prod_{j=1}^{b+c}\left(g^{x_{j}}\right)^{\left(\mathbf{b}_{t}\right)_{j}}=1 \quad(\bmod n)
$$

which implies that

$$
\alpha_{t}=\sum_{j=1}^{b+c}\left(\mathbf{b}_{t}\right)_{j} x_{j}=0(\bmod \operatorname{ord}(g))
$$

Main Hypothesis

The size of a relation: logarithm of 1-norm $\left|\mathbf{f}_{i}\right|_{1}$ of its exponent vector.
(Thus relation vectors whose entries are $<n$ have size $O(\log n)$.)
Let $\Lambda_{\mathscr{B}}^{\prime} \subseteq \Lambda_{\mathscr{B}}$ be a lattice generated by $|\mathscr{B}|+c$ relations randomly chosen from amongst those in $\Lambda_{\mathscr{B}}$ of size $O(\log n)$.

Main Hypothesis

Then, as $n \rightarrow \infty$, the probability that $\left.\Lambda_{\mathscr{B}}^{\prime}\right|_{S_{i}}=\left.\Lambda_{\mathscr{B}}\right|_{s_{i}}$ is equal to the probability that $c+1$ random integers (in the sense of natural density) share no common factor, i.e. $1-1 / \zeta(c+1)$ where ζ is the Riemann zeta function.

Fontein and Wocjan prove this for $n \geq 8 b^{\frac{b+1}{2}}$ and $c=b+1$.

Runtime

$$
b=|\mathscr{B}|
$$

- entries of $b \times(b+c)$ matrix are size $O(\log n)$ (integers $<n$)
- computing kernel is polynomial in b and $\log n$
- kernel generators have entries of size polynomial in b and $\log n$
- $O(b)$ GCD operations on integers of this size
\Rightarrow runtime polynomial in b and $\log n$ plus $O(b)$ calls to \mathscr{O}.

Factoring Algorithm

Usual notation:

$$
L_{x}(\alpha, \beta)=\exp \left((\beta+o(1))(\log x)^{\alpha}(\log \log x)^{1-\alpha}\right)
$$

- Relation finding: As for index calculus, time $L_{n}(1 / 2,1)$ with $b=L_{n}(1 / 2,1 / 2)$.
- Linear algebra is polynomial in b and $\log n$
\Rightarrow full algorithm is subexponential $L_{n}(1 / 2, \beta)$ for some β.

Possible optimizations

1. elliptic curve method to remove all prime factors below a bound before attempting this algorithm
2. test for the existence of a non-trivial kernel periodically as we generate relations
3. use a single kernel element, when it is found, to obtain a multiple of ord (g) and then do further linear algebra modulo that modulus.
4. linear sieve of Coppersmith, Odlyzko and Schroeppel for relation-finding.
5. number field sieve in relation-finding: Gordon

Example

Take $n=62389$. Factor base of $b=15$ primes $2 \leq p \leq 47 . \mathrm{g}=43$
Goal: 25 relations.
With 188 smoothness tests, we find the relations:

$$
\begin{aligned}
43^{55571} & =2^{3} \cdot 3^{3} \cdot 7 \cdot 29 \\
43^{51344} & =5^{4} \\
43^{1724} & =2 \cdot 5^{3} \cdot 7 \cdot 23 \\
43^{9999} & =3 \cdot 13 \cdot 37 \\
43^{56136} & =2 \cdot 3 \cdot 11^{2} \cdot 13 \\
43^{53393} & =5^{4} \cdot 41 \\
43^{24567} & =2^{4} \cdot 7 \cdot 23^{2} \\
43^{2484} & =2 \cdot 3^{2} \cdot 13 \cdot 37 \\
43^{39818} & =7^{2}
\end{aligned}
$$

$$
\begin{aligned}
43^{41451} & =2^{2} \cdot 5 \cdot 7 \cdot 11^{2}, \\
43^{53596} & =3^{3} \cdot 11 \cdot 43, \\
43^{12688} & =2^{3} \cdot 3 \cdot 7 \cdot 19^{2}, \\
43^{10480} & =2^{3} \cdot 3^{3} \cdot 5 \cdot 13, \\
43^{19831} & =2^{8} \cdot 3 \cdot 5 \cdot 11, \\
43^{27853} & =2^{6} \cdot 3^{2} \cdot 5 \cdot 7, \\
43^{25154} & =2^{5} \cdot 31 \cdot 37, \\
43^{9481} & =2^{3} \cdot 7 \cdot 11,
\end{aligned}
$$

$$
\begin{aligned}
43^{20} & =2^{2} \cdot 5^{3} \cdot 7^{2}, \\
43^{25418} & =2^{5} \cdot 3 \cdot 17 \cdot 19 \\
43^{50821} & =5^{2} \cdot 41, \\
43^{46106} & =2 \cdot 3 \cdot 7 \cdot 11^{2}, \\
43^{14141} & =2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 19, \\
43^{26246} & =2 \cdot 3^{3} \cdot 5 \cdot 41, \\
43^{10795} & =2 \cdot 5^{3} \cdot 7 \cdot 11, \\
43^{20889} & =5 \cdot 11 \cdot 37,
\end{aligned}
$$

Example

The relation matrix is (cols are relations):

$$
\left(\begin{array}{lllllllllllllllllllllllll}
3 & 0 & 1 & 0 & 1 & 0 & 4 & 1 & 0 & 2 & 0 & 3 & 3 & 8 & 6 & 5 & 3 & 2 & 5 & 0 & 1 & 1 & 1 & 1 & 0 \\
3 & 0 & 0 & 1 & 1 & 0 & 0 & 2 & 0 & 0 & 3 & 1 & 3 & 1 & 2 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 3 & 0 & 0 \\
0 & 4 & 3 & 0 & 0 & 4 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 3 & 0 & 2 & 0 & 2 & 1 & 3 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 2 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 2 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 2 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 2 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0
\end{array}\right)
$$

Example

Rows representing the right kernel:

$$
\left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrr}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 12 & 0 & -23 & 3 & 0 & 14 & 18 & 0 & -14 & -13 & 0 \\
0 & 0 & 2 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 7 & 0 & -12 & 1 & 0 & 8 & 10 & 0 & -8 & -8 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 1 & -1 & 0 & -1 & -1 & 0 & 1 & 2 & -1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 8 & 0 & -15 & 2 & 0 & 8 & 10 & 0 & -8 & -7 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 13 & 0 & -25 & 3 & 0 & 14 & 19 & 0 & -15 & -13 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & -1 & 0 & 4 & 0 & -7 & 0 & 0 & 4 & 5 & 0 & -4 & -2 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 3 & 0 & -5 & -1 & 0 & 3 & 3 & 0 & -3 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 8 & 0 & -16 & 2 & 0 & 9 & 11 & 0 & -9 & -8 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 2 & 0 & -5 & 1 & 0 & 2 & 3 & -2 & -2 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 6 & 0 & -15 & 3 & 0 & 8 & 11 & 0 & -8 & -8 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 14 & 0 & -27 & 3 & 0 & 16 & 20 & 0 & -16 & -13 & 0
\end{array}\right)
$$

Example

The corresponding α_{k} are:

$$
\begin{gathered}
1201200,631400,-61600,708400,1232000,323400, \\
277200,754600,169400,662200,1309000 .
\end{gathered}
$$

Their gcd is 15400 . We check that

$$
43^{15400}=1, \quad 43^{15400 / 2}=51174 \neq \pm 1(\bmod n)
$$

and therefore taking

$$
\operatorname{gcd}(51174-1,62389)=701
$$

reveals a non-trivial factor. In fact, $62389=701 \cdot 89$.

Thank you!

[^0]: ${ }^{1}$ coming soon to a slide deck near you!

