Factoring using multiplicative relations modulo n: a subexponential algorithm inspired by the index calculus

Katherine E. Stange

MathCrypt, August 19th, 2023

Factoring

Well-known problems that are **equivalent** to factoring *n*:

- 1. Finding the Euler totient $\varphi(n)$
- 2. finding the order of elements $g \in (\mathbb{Z}/n\mathbb{Z})^*$ (under ERH; Miller, Shor, Ekerå)

Multiplicative relations modulo n

Factor base \mathcal{B} of *b* residues a_1, \ldots, a_b modulo *n*

Multiplicative relations:

$$\prod_{i=1}^{b} a_i^{f_i} = 1$$

Lattice of exponent vectors:

$$\Lambda_{\mathscr{B}} = \left\{ \mathbf{f} = (f_i)_{i=1}^b : \prod_{i=1}^b a_i^{f_i} = 1 \right\} \subseteq \mathbb{Z}^b.$$

If the residues generate $(\mathbb{Z}/n\mathbb{Z})^*$, then $\Lambda_{\mathscr{B}}$ will have covolume equal to $\varphi(n)$.

The restriction $\Lambda_{\mathscr{B}}|_{S_i}$ of $\Lambda_{\mathscr{B}}$ to *i*-th coordinate axis S_i has covolume = ord(a_i).

Equivalently, any generating set for $\Lambda_{\mathscr{B}}|_{S_i}$ will be $\{d_j \mathbf{e}_i\}_j$ where $gcd(d_j) = ord(a_i)$.

Main idea

If we can find a generating set for $\Lambda_{\mathscr{B}}|_{S_i}$, we have found $\operatorname{ord}(a_i)$.

And therefore, we factor n.

Approach:

- ► collect multiplicative relations modulo *n*, i.e. elements of $\Lambda_{\mathscr{B}} \subseteq \mathbb{Z}^{b}$
- ► do linear algebra to obtain elements of $\Lambda_{\mathscr{B}}|_{S_i} \subseteq \mathbb{Z}$

Index Calculus vs. Factoring

Index Calculus
$$g^x \equiv b \pmod{p}$$

Factor base:

$$p_1, p_2, \dots, p_b$$

Find relations (random *x*):

$$g^{x} = \prod_{i=1}^{b} p_{i}^{f_{i}} \pmod{p},$$

Linear algebra:

$$x\log(g) = \sum_{i=1}^{b} f_i \log(p_i) \pmod{p-1}$$

Factoring n

Factor base:

 $p_1, p_2, ..., p_b$

Find relations (random *x*):

$$g^{x} = \prod_{i=1}^{b} p_{i}^{f_{i}} \pmod{n},$$

Linear algebra:

$$x \log(g) = \sum_{i=1}^{b} f_i \log(p_i) \pmod{\varphi(n)}$$

From multiplicative relations to multiplicative order

Let \mathcal{O} be an oracle that provides multiplicative relations modulo n, of length $O(\log n)$ amongst a factor base \mathcal{B} .

Theorem

Under the existence of \mathcal{O} :

- ▶ there is a Las Vegas algorithm to find the multiplicative order of residues modulo n
- with runtime polynomial in $|\mathcal{B}|$ and $\log n$;
- with $|\mathcal{B}| + c = O(|\mathcal{B}|)$ calls to \mathcal{O} ;
- ▶ and under the Main Hypothesis¹, the probability of success approaches $1 1/\zeta(c+1)$.

¹coming soon to a slide deck near you!

Algorithm

1. Collect multiplicative relations:

$$g^{x_j} = \prod_{i=1}^b p_i^{f_{j,i}} \pmod{n},$$

2. Find relations \mathbf{b}_t between $\mathbf{f}_j = (f_{j,i})_i$ in \mathbb{Z} :

$$\sum_{j=1}^{b+c} (\mathbf{b}_t)_j \mathbf{f}_j = \mathbf{0},$$

3. Compute α_t :

$$\alpha_t := \sum_{j=1}^{b+c} (\mathbf{b}_t)_j x_j.$$

4. Take $gcd(\alpha_t)$.

Correctness

$$g^{x_j} = \prod_{i=1}^{b} p_i^{f_{j,i}} \pmod{n}, \quad \sum_{j=1}^{b+c} (\mathbf{b}_t)_j \mathbf{f}_j = \mathbf{0},$$

implies that

$$\prod_{j=1}^{b+c} (g^{x_j})^{(\mathbf{b}_t)_j} = 1 \pmod{n}$$

which implies that

$$\alpha_t = \sum_{j=1}^{b+c} (\mathbf{b}_t)_j x_j = 0 \pmod{\operatorname{ord}(g)}$$

Main Hypothesis

The size of a relation: logarithm of 1-norm $|\mathbf{f}_i|_1$ of its exponent vector.

(Thus relation vectors whose entries are < n have size $O(\log n)$.)

Let $\Lambda'_{\mathscr{B}} \subseteq \Lambda_{\mathscr{B}}$ be a lattice generated by $|\mathscr{B}| + c$ relations randomly chosen from amongst those in $\Lambda_{\mathscr{B}}$ of size $O(\log n)$.

Main Hypothesis

Then, as $n \to \infty$, the probability that $\Lambda'_{\mathscr{B}}|_{S_i} = \Lambda_{\mathscr{B}}|_{S_i}$ is equal to the probability that c + 1 random integers (in the sense of natural density) share no common factor, i.e. $1 - 1/\zeta(c+1)$ where ζ is the Riemann zeta function.

Fontein and Wocjan prove this for $n \ge 8b^{\frac{b+1}{2}}$ and c = b + 1.

Runtime

 $b = |\mathcal{B}|$

- entries of $b \times (b + c)$ matrix are size $O(\log n)$ (integers < n)
- computing kernel is polynomial in b and $\log n$
- \blacktriangleright kernel generators have entries of size polynomial in b and log n
- O(b) GCD operations on integers of this size

 \Rightarrow runtime polynomial in *b* and log *n* plus O(*b*) calls to \mathcal{O} .

Factoring Algorithm

Usual notation:

$$L_x(\alpha,\beta) = \exp((\beta + o(1))(\log x)^{\alpha}(\log \log x)^{1-\alpha}).$$

Relation finding: As for index calculus, time L_n(1/2, 1) with b = L_n(1/2, 1/2).
 Linear algebra is polynomial in b and log n

 \Rightarrow full algorithm is subexponential $L_n(1/2,\beta)$ for some β .

Possible optimizations

- 1. elliptic curve method to remove all prime factors below a bound before attempting this algorithm
- 2. test for the existence of a non-trivial kernel periodically as we generate relations
- 3. use a single kernel element, when it is found, to obtain a multiple of ord(g) and then do further linear algebra modulo that modulus.
- 4. linear sieve of Coppersmith, Odlyzko and Schroeppel for relation-finding.
- 5. number field sieve in relation-finding: Gordon

Take n = 62389. Factor base of b = 15 primes $2 \le p \le 47$. g = 43 Goal: 25 relations.

With 188 smoothness tests, we find the relations:

 $43^{55571} = 2^3 \cdot 3^3 \cdot 7 \cdot 29.$ $43^{51344} = 5^4$ $43^{1724} = 2 \cdot 5^3 \cdot 7 \cdot 23$. $43^{9399} = 3 \cdot 13 \cdot 37$. $43^{56136} = 2 \cdot 3 \cdot 11^2 \cdot 13.$ $43^{53393} = 5^4 \cdot 41$ $43^{24567} = 2^4 \cdot 7 \cdot 23^2$. $43^{2484} = 2 \cdot 3^2 \cdot 13 \cdot 37$ $43^{39818} = 7^2$

$$43^{41451} = 2^{2} \cdot 5 \cdot 7 \cdot 11^{2}, \qquad 4$$

$$43^{53596} = 3^{3} \cdot 11 \cdot 43, \qquad 43^{2}$$

$$43^{12688} = 2^{3} \cdot 3 \cdot 7 \cdot 19^{2}, \qquad 43^{5}$$

$$43^{10480} = 2^{3} \cdot 3^{3} \cdot 5 \cdot 13, \qquad 43^{4}$$

$$43^{19831} = 2^{8} \cdot 3 \cdot 5 \cdot 11, \qquad 43^{14}$$

$$43^{27853} = 2^{6} \cdot 3^{2} \cdot 5 \cdot 7, \qquad 43^{2}$$

$$43^{25154} = 2^{5} \cdot 31 \cdot 37, \qquad 43^{14}$$

$$43^{9481} = 2^{3} \cdot 7 \cdot 11, \qquad 43^{2}$$

$$43^{20} = 2^2 \cdot 5^3 \cdot 7^2,$$

$$43^{25418} = 2^5 \cdot 3 \cdot 17 \cdot 19,$$

$$43^{50821} = 5^2 \cdot 41,$$

$$43^{46106} = 2 \cdot 3 \cdot 7 \cdot 11^2,$$

$$43^{14141} = 2 \cdot 3 \cdot 5^2 \cdot 7 \cdot 19,$$

$$43^{26246} = 2 \cdot 3^3 \cdot 5 \cdot 41,$$

$$43^{10795} = 2 \cdot 5^3 \cdot 7 \cdot 11,$$

$$43^{20889} = 5 \cdot 11 \cdot 37,$$

The relation matrix is (cols are relations):

Rows representing the right kernel:

1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	12	0	-23	3	0	14	18	0	-14	-13	0)
1	0	0	2	0	0	0	-1	0	0	0	0	0	0	0	7	0	-12	1	0	8	10	0	$^{-8}$	$^{-8}$	0
	0	0	0	1	0	0	0	0	0	0	0	0	-1	0	0	0	1	-1	0	$^{-1}$	-1	0	1	2	-1
	0	0	0	0	1	0	0	0	0	0	0	0	$^{-1}$	0	8	0	-15	2	0	8	10	0	$^{-8}$	-7	0
	0	0	0	0	0	1	0	0	0	0	0	0	0	0	13	0	-25	3	0	14	19	0	-15	-13	0
	0	0	0	0	0	0	0	1	0	0	0	0	-1	0	4	0	-7	0	0	4	5	0	$^{-4}$	$^{-2}$	-1
	0	0	0	0	0	0	0	0	1	0	0	0	0	0	3	0	-5	$^{-1}$	0	3	3	0	-3	-1	0
	0	0	0	0	0	0	0	0	0	1	0	0	0	0	8	0	-16	2	0	9	11	0	-9	$^{-8}$	0
	0	0	0	0	0	0	0	0	0	0	0	1	0	0	2	0	-5	1	0	2	3	$^{-2}$	$^{-2}$	-1	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	1	6	0	-15	3	0	8	11	0	$^{-8}$	$^{-8}$	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	14	0	-27	3	0	16	20	0	-16	-13	0 /

The corresponding α_k are:

1201200, 631400, -61600, 708400, 1232000, 323400,

277200, 754600, 169400, 662200, 1309000.

Their gcd is 15400. We check that

$$43^{15400} = 1$$
, $43^{15400/2} = 51174 \neq \pm 1 \pmod{n}$.

and therefore taking

$$gcd(51174 - 1, 62389) = 701$$

reveals a non-trivial factor. In fact, $62389 = 701 \cdot 89$.

Thank you!

