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Factoring

Well-known problems that are equivalent to factoring n:
1. Finding the Euler totient ϕ(n)
2. finding the order of elements g ∈ (Z/nZ)∗ (under ERH; Miller, Shor, Ekerå)



Multiplicative relations modulo n
Factor baseB of b residues a1, . . . ,ab modulo n

Multiplicative relations:
b
∏

i=1

a fi
i = 1

Lattice of exponent vectors:

ΛB =
¨

f= ( fi )
b
i=1 :

b
∏

i=1

a fi
i = 1

«

⊆Zb .

If the residues generate (Z/nZ)∗, then ΛB will have covolume equal to ϕ(n).

The restriction ΛB |Si
of ΛB to i -th coordinate axis Si has covolume = ord(ai ).

Equivalently, any generating set for ΛB |Si
will be {d j ei} j where gcd(d j ) = ord(ai ).



Main idea

If we can find a generating set for ΛB |Si
, we have found ord(ai ).

And therefore, we factor n.

Approach:
É collect multiplicative relations modulo n, i.e. elements of ΛB ⊆Zb

É do linear algebra to obtain elements of ΛB |Si
⊆Z



Index Calculus vs. Factoring

Index Calculus g x ≡ h (mod p)

Factor base:

p1, p2, . . . , pb

Find relations (random x):

g x =
b
∏

i=1

p fi
i (mod p),

Linear algebra:

x log(g ) =
b
∑

i=1

fi log(pi ) (mod p − 1)

Factoring n

Factor base:

p1, p2, . . . , pb

Find relations (random x):

g x =
b
∏

i=1

p fi
i (mod n),

Linear algebra:

x log(g ) =
b
∑

i=1

fi log(pi ) (mod ϕ(n))



From multiplicative relations to multiplicative order

Let O be an oracle that provides multiplicative relations modulo n, of length O(log n)
amongst a factor baseB .

Theorem
Under the existence of O :
É there is a Las Vegas algorithm to find the multiplicative order of residues modulo n
É with runtime polynomial in |B| and log n;
É with |B|+ c =O(|B|) calls to O ;
É and under the Main Hypothesis1, the probability of success approaches 1− 1/ζ (c + 1).

1coming soon to a slide deck near you!



Algorithm

1. Collect multiplicative relations:

g x j =
b
∏

i=1

p
f j ,i

i (mod n),

2. Find relations bt between f j = ( f j ,i )i in Z:

b+c
∑

j=1

(bt ) j f j = 0,

3. Compute αt :

αt :=
b+c
∑

j=1

(bt ) j x j .

4. Take gcd(αt ).



Correctness

g x j =
b
∏

i=1

p
f j ,i

i (mod n),
b+c
∑

j=1

(bt ) j f j = 0,

implies that
b+c
∏

j=1

(g x j )(bt ) j = 1 (mod n)

which implies that

αt =
b+c
∑

j=1

(bt ) j x j = 0 (mod ord(g ))



Main Hypothesis

The size of a relation: logarithm of 1-norm |fi |1 of its exponent vector.

(Thus relation vectors whose entries are < n have size O(log n).)

Let Λ′B ⊆ΛB be a lattice generated by |B|+ c relations randomly chosen from amongst
those in ΛB of size O(log n).

Main Hypothesis
Then, as n→∞, the probability that Λ′B |Si

=ΛB |Si
is equal to the probability that c + 1

random integers (in the sense of natural density) share no common factor, i.e. 1− 1/ζ (c + 1)
where ζ is the Riemann zeta function.

Fontein and Wocjan prove this for n ≥ 8b
b+1

2 and c = b + 1.



Runtime

b = |B|

É entries of b × (b + c)matrix are size O(log n) (integers < n)
É computing kernel is polynomial in b and log n
É kernel generators have entries of size polynomial in b and log n
É O(b ) GCD operations on integers of this size

⇒ runtime polynomial in b and log n plus O(b ) calls to O .



Factoring Algorithm

Usual notation:

Lx (α,β) = exp((β+ o(1))(log x)α(log log x)1−α).

É Relation finding: As for index calculus, time Ln(1/2,1) with b = Ln(1/2,1/2).
É Linear algebra is polynomial in b and log n

⇒ full algorithm is subexponential Ln(1/2,β) for some β.



Possible optimizations

1. elliptic curve method to remove all prime factors below a bound before attempting
this algorithm

2. test for the existence of a non-trivial kernel periodically as we generate relations
3. use a single kernel element, when it is found, to obtain a multiple of ord(g ) and

then do further linear algebra modulo that modulus.
4. linear sieve of Coppersmith, Odlyzko and Schroeppel for relation-finding.
5. number field sieve in relation-finding: Gordon



Example
Take n = 62389. Factor base of b = 15 primes 2≤ p ≤ 47. g = 43
Goal: 25 relations.
With 188 smoothness tests, we find the relations:

4355571 = 23 · 33 · 7 · 29,

4351344 = 54,

431724 = 2 · 53 · 7 · 23,

439399 = 3 · 13 · 37,

4356136 = 2 · 3 · 112 · 13,

4353393 = 54 · 41,

4324567 = 24 · 7 · 232,

432484 = 2 · 32 · 13 · 37,

4339818 = 72,

4341451 = 22 · 5 · 7 · 112,

4353596 = 33 · 11 · 43,

4312688 = 23 · 3 · 7 · 192,

4310480 = 23 · 33 · 5 · 13,

4319831 = 28 · 3 · 5 · 11,

4327853 = 26 · 32 · 5 · 7,

4325154 = 25 · 31 · 37,

439481 = 23 · 7 · 11,

4320 = 22 · 53 · 72,

4325418 = 25 · 3 · 17 · 19,

4350821 = 52 · 41,

4346106 = 2 · 3 · 7 · 112,

4314141 = 2 · 3 · 52 · 7 · 19,

4326246 = 2 · 33 · 5 · 41,

4310795 = 2 · 53 · 7 · 11,

4320889 = 5 · 11 · 37,



Example

The relation matrix is (cols are relations):




































3 0 1 0 1 0 4 1 0 2 0 3 3 8 6 5 3 2 5 0 1 1 1 1 0
3 0 0 1 1 0 0 2 0 0 3 1 3 1 2 0 0 0 1 0 1 1 3 0 0
0 4 3 0 0 4 0 0 0 1 0 0 1 1 1 0 0 3 0 2 0 2 1 3 1
1 0 1 0 0 0 1 0 2 1 0 1 0 0 1 0 1 2 0 0 1 1 0 1 0
0 0 0 0 2 0 0 0 0 2 1 0 0 1 0 0 1 0 0 0 2 0 0 1 1
0 0 0 1 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 1 0 0 0
0 0 1 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0







































Example

Rows representing the right kernel:



Example

The corresponding αk are:

1201200, 631400, −61600, 708400, 1232000, 323400,

277200, 754600, 169400, 662200, 1309000.

Their gcd is 15400. We check that

4315400 = 1, 4315400/2 = 51174 6=±1 (mod n).

and therefore taking
gcd(51174− 1,62389) = 701

reveals a non-trivial factor. In fact, 62389= 701 · 89.



Thank you!


