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Elliptic divisibility sequences

Definition
An integer sequence W is an elliptic divisibility sequence if for
all positive integers m > n,

Wm+nWm−nW 2
1 = Wm+1Wm−1W 2

n −Wn+1Wn−1W 2
m .

• Generated by W1, . . . ,W4 via the recurrence.
• Example: 1,2,3,4,5,6,7,8,9,10, . . .
• Example: 1,3,8,21,55,144,377,987,2584,6765, . . .
• Example: 1,1,−3,11,38,249,−2357,8767,496036,
−3769372,−299154043,−12064147359, . . .
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Divisibility and Integrality

If W1, . . . ,W4 are integer with W1 = 1, W2W3 6= 0, and W2|W4,
then the sequence . . .

1. is entirely integer;
2. satisfies the Divisibility Property

m|n =⇒ Wm|Wn ; and

3. if gcd(W3,W4) = 1, it satisfies the Strong Divisibility
Property

Wgcd(m,n) = gcd(Wm,Wn) .
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Somos sequences

A Somos-k sequence is a sequence satisfying the recurrence

CnCn+k =

[k/2]∑
j=1

Cn−jCn−(k−j).

But in this talk, we will mean more generally with coefficients
allowed, so

CnCn+k =

[k/2]∑
j=1

ajCn−jCn−(k−j).

• EDS are Somos-4, Somos-5, Somos-6, etc. (van der
Poorten, Swart, 2004)



Elliptic divisibility sequences Elliptic nets Connections

Example: y2 + y = x3 + x2 − 2x , P = (0, 0)

P = (0,0)

W1 = + 1
[2]P = (3,5) W2 = + 1

[3]P =

(
−11

9
,
28
27

)
W3 = − 3

[4]P =

(
114
121

,− 267
1331

)
W4 = + 11

[5]P =

(
−2739

1444
,−77033

54872

)
W5 = + 38

[6]P =

(
89566
62001

,−31944320
15438249

)
W6 = + 249

[7]P =

(
−2182983

5555449
,−20464084173

13094193293

)
W7 = − 2357
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Sequences from division polynomials

Consider a point P = (x , y) and its multiples on an elliptic curve
E : y2 = x3 + Ax + B:

P, [2]P, [3]P, [4]P, . . .

where

Ψ1 = 1, Ψ2 = 2y ,

Ψ3 = 3x4 + 6Ax2 + 12Bx − A2,

Ψ4 = 4y(x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4ABx − 8B2 − A3),

Ψm+nΨm−nΨ2
1 = Ψm+1Ψm−1Ψ2

n −Ψn+1Ψn−1Ψ2
m .

It gives an elliptic divisibility sequence of division polynomials.
If we evaluate at P, we get the elliptic divisibility sequence
associated to E and P.
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Division polynomials as complex elliptic functions

The n-th division polynomial has divisor∑
P∈E [n]

(P)− n2(O).

In complex case, fix a lattice Λ ∈ C corresponding to an elliptic
curve E . For each n ∈ Z, define a function Ωn on C in the
variable z:

Ωn(z; Λ) =
σ(nz; Λ)

σ(z; Λ)n2
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Division polynomials and sequences over finite fields

• Using the formulae, we can consider divison polynomials
over any field.

• Over a finite field, the point P will always have finite order,
say n. The associated sequence will have Wn = 0.

Example
E : y2 + y = x3 + x2 − 2x over F5.
P = (0,0) has order 9.
The associated sequence is
0,1,1,2,1,3,4,3,2,0,3,2,1,2,4,3,4,4,0,1,1,2,1,3,4, . . .
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Division polynomials and sequences over finite fields

• Using the formulae, we can consider divison polynomials
over any field.

• Over a finite field, the point P will always have finite order,
say n. The associated sequence will have Wn = 0.

Example
E : y2 + y = x3 + x2 − 2x over F5.
P = (0,0) has order 9.
The associated sequence is
0,1,1,2,1,3,4,3,2,0,3,2,1,2,4,3,4,4,0,1,1,2,1,3,4, . . .
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The question - upping the dimension

The elliptic divisibility sequence is associated to the sequence
of points [n]P on the curve.

[n]P ↔Wn

We might dream of . . .

[n]P + [m]Q ↔Wn,m

Or even . . .

[n]P + [m]Q + [t ]R ↔Wn,m,t

etc.
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History of this question

• Robbins forum discussions of ’denominators’ (c. 2001):
Noam Elkies, Michael Somos, James Propp.

• Graham Everest, Peter Rogers, Thomas Ward, Nelson
Stephens considered when these denominators may be
prime (2002).
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Definition of an elliptic net

Definition (S)
Let R be an integral domain, and A a finite-rank free abelian
group. An elliptic net is a map W : A→ R such that the
following recurrence holds for all p, q, r , s ∈ A.

W (p + q + s)W (p − q)W (r + s)W (r)

+ W (q + r + s)W (q − r)W (p + s)W (p)

+ W (r + p + s)W (r − p)W (q + s)W (q) = 0

• Elliptic divisibility sequences are a special case (A = Z)
• In this talk, we will mostly discuss rank 2: A = Z2.
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The octahedron recurrence

In the case of p = (l ,m − 1,n), q = (1,1,0), r = (0,1,1),
s = (0,−2,0) for example, we obtain a recurrence of the form

aW (l + 1,m,n)W (l − 1,m,n)

+ bW (l ,m + 1,n)W (l ,m − 1,n)

+ cW (l ,m,n + 1)W (l ,m,n − 1) = 0

called the Octahedron Recurrence or Hirota Bilinear Equation.
(Hirota (1981), subsequently many people, including David
Speyer.)
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Laurentness

Theorem (S)
The terms of an elliptic net are generated by the recurrence
relation from a finite set of initial terms. Furthermore, the terms
are Laurent polynomials in a set of initial terms of size 4 for
rank one, and size no larger than 3n − 1 for rank n > 1.

Proof.
A lot of induction.
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Laurentness in rank one

In rank one, the terms are polynomials in initial conditions, with
W (2) and W (1) possibly appearing to negative powers:
If a = W1,b = W2, c = W3,d = W4, then

W5 =
db3 − ac3

a3 , W6 =
−a4cd2 − c4b2a + dcb5

ba5 ,etc.
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Laurentness in rank two

Theorem (S.)
Let W : Z2 → R be an elliptic net. All terms are polys with
Z-coeffs in variables
W (1,1),W (1,0),W (0,1), W (1,1)−1,W (1,0)−1,W (0,1)−1,
W (2,1), W (1,2), W (2,0), W (0,2),
W (0,2)W (2,1)W (1,0)−W (0,1)W (2,0)W (1,2)

W (0,1)3W (2,1)−W (1,0)3W (1,2)
.
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Integer terms

In particular, if
• W (1,0) = W (0,1) = W (1,1) = 1,
• the terms W (2,0), W (0,2), W (1,2), W (2,1) are integers

and
• W (2,1)−W (1,2) divides

W (0,2)W (2,1)−W (2,0)W (1,2),
then all terms of the elliptic net are integers.
e.g.

W (2,3) = W (0,2)

(
W (0,2)W (2,1)−W (2,0)W (1,2)

W (2,1)−W (1,2)

)
−W (1,2)2W (2,1).
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Laurentness in higher rank

Theorem

Sn = {v ∈ Zn : max
i=1,...,n

|vi | = 1},

S′n = Sn ∩ {v ∈ Zn : vi = 0 for at least one i}.

The terms of an elliptic net of rank n are Laurent polynomials in
the following variables and coefficients:

1. For n = 3:

Variables: {W (v) : v ∈ S3}; Coefficients: Z

2. For n ≥ 4:

Variables: {W (v) : v ∈ S′n}; Coefficients: Z[W (v) : v ∈ Sn\S′n]
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Elliptic nets in their natural habitat

E : y2 + y = x3 + x2 − 2x ; P = (0,0),Q = (1,0)

c ∞ c [1]P c [2]P

c [1]Q c [1]P + [1]Q c [2]P + [1]Q

c [2]Q c [1]P + [2]Q c [2]P + [2]Q

c [3]Q c [1]P + [3]Q c [2]P + [3]Q

An elliptic net!
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Elliptic nets in their natural habitat

E : y2 + y = x3 + x2 − 2x ; P = (0,0),Q = (1,0)

c ∞ c (0
1 ,

0
1

) c (3
1 ,

5
1

)
c (1

1 ,
0
1

) c (−2
1 ,−

1
1

) c (5
4 ,−

13
8

)
c (6

1 ,−
16
1

) c (1
9 ,−

19
27

) c (39
1 ,

246
1

)
c (56

25 ,
371
125

) c (−95
64 ,

495
512

) c (328
361 ,−

2800
6859

)

An elliptic net!
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Elliptic nets in their natural habitat

E : y2 + y = x3 + x2 − 2x ; P = (0,0),Q = (1,0)

c ∞ c ( 0
12 ,

0
13

) c ( 3
12 ,

5
13

)
c ( 1

12 ,
0
13

) c (− 2
12 ,− 1

13

) c ( 5
22 ,−13

23

)
c ( 6

12 ,−16
13

) c ( 1
32 ,−19

33

) c (39
12 ,

246
13

)
c (56

52 ,
371
53

) c (−95
82 ,

495
83

) c (328
192 ,−2800

193

)

An elliptic net!
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Elliptic nets in their natural habitat

E : y2 + y = x3 + x2 − 2x ; P = (0,0),Q = (1,0)

c 0 c 1 c 1

c 1 c 1 c 2

c 1 c 3 c 1

c 5 c 8 c 19

An elliptic net!
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Elliptic nets in their natural habitat

E : y2 + y = x3 + x2 − 2x ; P = (0,0),Q = (1,0)

c +0 c + 1 c + 1

c + 1 c + 1 c + 2

c + 1 c + 3 c − 1

c − 5 c + 8 c − 19

An elliptic net!
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Elliptic nets in their natural habitat

E : y2 + y = x3 + x2 − 2x ; P = (0,0),Q = (1,0)

c +0 c + 1 c + 1

c + 1 c + 1 c + 2

c + 1 c + 3 c − 1

c − 5 c + 8 c − 19

An elliptic net!
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Curve + points give net

Let E be an elliptic curve defined over a field K . For all v ∈ Zn,
we define rational functions Ψv on En which:

• form an elliptic net (in v)
• generalise division polynomials
• vanish at P such that v · P = 0
• have poles only on Pi + Pj = 0 and Pi = 0
• Ψv = 1 whenever v is ei or ei + ej for some standard basis

vectors ei 6= ej .

Then for any fixed P ∈ E(K )n, the function W : Zn → K defined
by

W (v) = Ψv(P)

is an elliptic net.
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Make functions

We know the divisor we want:

([v1]P1 + [v2]P2 = O)− (v1v2)(P1 + P2 = O)

− (v2
1 − v1v2)(P1 = O)− (v2

2 − v1v2)(P2 = O)

As before, over complexes this allows us to define polynomials:

Ωu,v (z,w ; Λ) =
σ(uz + vw ; Λ)

σ(z; Λ)u2−uvσ(z + w ; Λ)uvσ(w ; Λ)v2−uv
.
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Net polynomial examples

Ψ−1,1 = x1 − x2 ,

Ψ2,1 = 2x1 + x2 −
(

y2 − y1

x2 − x1

)2

,

Ψ2,−1 = (y1 + y2)2 − (2x1 + x2)(x1 − x2)2 ,

Ψ1,1,1 =
y1(x2 − x3) + y2(x3 − x1) + y3(x1 − x2)

(x1 − x2)(x1 − x3)(x2 − x3)
,

Can calculate more via the recurrence...

Ψ3,1 = (x2 − x1)−3(4x6
1 − 12x2x5

1 + 9x2
2 x4

1 + 4x3
2 x3

1

− 4y2
2 x3

1 + 8y2
1 x3

1 − 6x4
2 x2

1 + 6y2
2 x2x2

1 − 18y2
1 x2x2

1

+ 12y2
1 x2

2 x1 + x6
2 − 2y2

2 x3
2 − 2y2

1 x3
2 + y4

2 − 6y2
1 y2

2

+ 8y3
1 y2 − 3y4

1 ) .
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Curve-net bijection

Theorem (S.)
There is a bijection of partially ordered sets:

elliptic net
W : Zn → K
modulo scale
equivalence

 ↔


cubic Weierstrass curve C over K

together with m points in C(K )
modulo change of variables
x ′ = x + r , y ′ = y + sx + t



• n = m and W (v) = Ψv(P1, . . . ,Pm,C)

• explicit equations to go back and forth!
• singular cubics correspond to Lucas sequences or integers
• scale equivalence: W ∼ W ′ ⇐⇒ W (v) = f (v)W ′(v) for f : Zn → K∗ quadratic

• on left, remove nets with zeroes too close to the origin

• on right, remove cases with small torsion points or pairs which are equal or inverses
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modulo scale
equivalence

 ↔


cubic Weierstrass curve C over K

together with m points in C(K )
modulo change of variables
x ′ = x + r , y ′ = y + sx + t


• n = m and W (v) = Ψv(P1, . . . ,Pm,C)

• explicit equations to go back and forth!
• singular cubics correspond to Lucas sequences or integers
• scale equivalence: W ∼ W ′ ⇐⇒ W (v) = f (v)W ′(v) for f : Zn → K∗ quadratic

• on left, remove nets with zeroes too close to the origin

• on right, remove cases with small torsion points or pairs which are equal or inverses
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Example over Q

E : y2 + y = x3 + x2 − 2x ; P = (0,0),Q = (1,0)

↑
Q

4335 5959 12016 −55287 23921 1587077
94 479 919 − 2591 13751 68428
− 31 53 −33 −350 493 6627

−5 8 −19

− 41 − 151 989

1 3 −1

− 13 −36 181

1 1 2

−5 7 89

0 1 1

−3 11 38

P →
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Fibonacci numbers

Consider the sequence of even-indexed Fibonacci numbers,

1, 3, 8, 21, 55, 144, 377, 987, 2584, 6765, 17711, . . .

satisfying W (n + 2) = 3W (n + 1)−W (n). Associated to:
y2 + 3xy + 3y = x3 + 2x2 + x , P = (0,0) (nodal).

Non-singular
points of the curve isomorphic with Q̄∗:

(x , y) 7→ 2y + (3 +
√

5)(x + 1)

2y + (3−
√

5)(x + 1)
.

That is to say, Cns is a twisted form of Gm. The point P = (0,0)

is associated to the unit
(

3+
√

5
3−
√

5

)
.

Unit group in Q(
√

5) is rank 1, so there’s no interesting rational
rank two Fibonacci numbers.
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Rank two Fibonacci numbers

Take another point Q = (1,
√

13− 3) on this curve. The elliptic
divisibility sequence associated to C and Q begins

1, 2
√

13, 88, 576
√

13, 97280, 2523136
√

13, 1700790272, . . .

It’s equivalent to the sequence sequence An =
√

2
n2−1

WE ,P(n)
beginning

1,
√

13√
2
,

11
2
,

9
√

13
2
√

2
,

95
4
,

77
√

13
4
√

2
,

811
8
,

657
√

13
8
√

2
,

6919
16

, . . .

satisfying An+2 =
(√

13√
2

)
An+1 − An.
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Rank two Fibonacci numbers

y2 + 3xy + 3y = x3 + 2x2 + x , P = (0,0), Q = (1,
√

13− 3)

(
2523136

0

) (
624869376
−2252980224

) (
307737706496
−1109564080128

) (
145553031069696
−524798916820992

) (
48306063204990976
−174169987801399296

)
(

0
97280

) (
2016768
−7270912

) (
−294087168
1060346368

) (
35253070848
−127106754560

) (
3858417639936
−13911722642944

)
(

576
0

) (
12864
−46336

) (
512064
−1846272

) (
742464
−2676992

) (
−6985271232
25185753600

)
(

0
88

) (
156
−556

) (
−924
3332

) (
−101448
365776

) (
12164268
−43858892

)
(

2
0

) (
3
−9

) (
−29
105

) (
−1278
4608

) (
−38365
138327

)
(

0
1

) (
0
1

) (
3
−10

) (
−27
98

) (
237
−854

)
(

0
0

) (
0
1

) (
0
3

) (
0
8

) (
0
21

)
(

0
−1

) (
0
1

) (
3

10

) (
27
98

) (
237
854

)
(
−2
0

) (
−3
−9

) (
29

105

) (
1278
4608

) (
38365

138327

)
(

0
−88

) (
−156
−556

) (
−924
−3332

) (
101448
365776

) (
12164268
43858892

)

Where
(

a
b

)
means a

√
13 + b.
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Example over F5

E : y2 + y = x3 + x2 − 2x ; P = (0,0),Q = (1,0)

↑
Q

0 4 4 3 1 2 4
4 4 4 4 1 3 0
4 3 2 0 3 2 1
0 3 1 4 4 4 4
1 3 4 2 4 1 0
1 1 2 0 2 4 1
0 1 1 2 1 3 4

P →

• The polynomial Ψv(P) = 0 if and only if v · P = 0.
• These zeroes lie in a lattice: the lattice of apparition

associated to prime (here, 5).
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Periodicity property with respect to lattice of apparition

↑
Q

0 4 4 3 1 2 4
4 4 4 4 1 3 0
4 3 2 0 3 2 1
0 3 1 4 4 4 4
1 3 4 2 4 1 0
1 1 2 0 2 4 1
0 1 1 2 1 3 4

P →

• The elliptic net is not
periodic modulo the lattice
of apparition.

• The appropriate translation
property should tell how to
obtain the green values
from the blue values.

• There are such translation properties.
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Translation properties

Let Γ be the lattice of apparition for an elliptic net W . Define
g : Γ× Zn → K ∗ by

g(r,m) =
W (m + r)

W (m)
.

Theorem (Ward n = 1; S., n > 1)
The function g is quadratic and affine linear in 2nd variable.

Example
If n = 1, W (r) = 0, then

g(kr ,m) = amkbk2
,

for all k ∈ Z.
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Elliptic curves and pairings
For any divisor (Q + S)− (S) ∈ Pic0(E), we obtain an extension

0→ Gm → JQ,S → E → 0

called a Generalised Jacobian.

Suppose [m]P = O. If
σ : E → JQ,S is a section, then

τm(P,Q) = mσ(P)− σ(O) ∈ Gm

is a bilinear map (Tate-Lichtenbaum pairing)

τm : E [m]× E/mE → K ∗/(K ∗)m

and em : E [m]× E [m]→ µm defined by

em(P,Q) = τm(P,Q)/τm(Q,P)

is the Weil pairing (intersection pairing on homology of elliptic
curve).
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Elliptic nets and pairings

Theorem
Let Q1,Q2,Q3 be points on an elliptic curve E and let W be any
elliptic net associated to E and points T = (P1, . . . ,Pn) such
that we can find qi ∈ Zn for which qi · T = Qi on the curve.
The Tate-Lichtenbaum pairing of Q1 ∈ E [m] and Q2 ∈ E is
given by

τm(Q1,Q2) =
W (mq1 + q2 + q3)W (q3)

W (mq1 + q3)W (q2 + q3)

and the Weil pairing of Q1,Q2 ∈ E [m] is given by

em(Q1,Q2) =
W (mq1 + q2 + q3)W (q1 + q3)W (mq2 + q3)

W (mq1 + q3)W (q2 + q3)W (q1 + mq2 + q3)
.

(These formulæ are independent of q3 and the choice of T.)
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Periodicity and pairings

Reminder:
g(r,m) =

W (m + r)

W (m)
.

Combining our results, we have

τm(P,Q) =
g(mp,q + s)

g(mp,s)
,

and
em(P,Q) =

g(mp,q + s)g(mq,s)

g(mp,s)g(mq,p + s)
.
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Primitive Divisors in Elliptic Divisibility Sequences

We may define a Primitive Divisor of a term Wn to be a prime
p such that p|Wn and p 6 |Wm for any 0 < m < n. We then have

Theorem (Silverman’s Elliptic Zsigmondy Theorem)
For every elliptic divisibility sequence there is a finite bound N
such that for any n > N, Wn has a primitive divisor.
There have since been many other results...
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Lattices of Apparition and Primitive Divisors

Question 1
What lattices of apparition arise in an elliptic net?
Rank 1: all but finitely many lattices of apparition arise in an
elliptic net.
Geometrically, this asks: What groups appear as kernels of
reduction mod p of a subgroup Γ ⊂ E(K ) as p ranges over
primes?

Question 2
What indices of lattices of apparition arise in an elliptic net?
Rank 1: all but finitely many integers arise as indices (ranks of
apparition) for an elliptic net.
Geometrically, this asks: What group orders can be obtained
as images of reduction mod p of a subgroup Γ ⊂ E(K ) as p
ranges over primes?
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apparition) for an elliptic net.

Geometrically, this asks: What group orders can be obtained
as images of reduction mod p of a subgroup Γ ⊂ E(K ) as p
ranges over primes?



Elliptic divisibility sequences Elliptic nets Connections

Lattices of Apparition and Primitive Divisors

Question 1
What lattices of apparition arise in an elliptic net?
Rank 1: all but finitely many lattices of apparition arise in an
elliptic net.
Geometrically, this asks: What groups appear as kernels of
reduction mod p of a subgroup Γ ⊂ E(K ) as p ranges over
primes?

Question 2
What indices of lattices of apparition arise in an elliptic net?
Rank 1: all but finitely many integers arise as indices (ranks of
apparition) for an elliptic net.
Geometrically, this asks: What group orders can be obtained
as images of reduction mod p of a subgroup Γ ⊂ E(K ) as p
ranges over primes?



Elliptic divisibility sequences Elliptic nets Connections

Applications to Cryptography: Pairing computation
• Can calculate the terms of the sequence with a

double-and-add algorithm.
• Thank you to Michael Scott, Augusto Jun Devigili and Ben

Lynn for implementing the algorithm.

• type a: 512 bit base-field, embedding degree 2, 1024 bits
security, y2 = x3 + x , group order is a Solinas prime.

• type f: 160 bit base-field, embedding degree 12, 1920 bits
security, Barreto-Naehrig curves [Pairing Friendly Elliptic
Curves of Prime Order, SAC 2005]

Algorithm: Miller’s Elliptic Net

type a 19.8439 ms 40.6252 ms
type f 238.4378 ms 239.5314 ms

average time of a test suite of 100 randomly generated pairings
in each of the two cases
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Applications to Cryptography: ECDLP

Problem
Let E be an elliptic curve over a finite field K = Fq. Suppose
one is given points P,Q ∈ E(K ) such that Q ∈ 〈P〉. Determine
k such that Q = [k ]P.

Joint work with Kristin Lauter and performed at Microsoft
Research.
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EDS Discrete Log

Problem (Width s EDS Discrete Log)
Given an elliptic divisibility sequence W and terms W (k),
W (k + 1), . . ., W (k + s − 1), determine k.

Let E be an elliptic curve over a finite field K = Fq. Suppose
one is given points P,Q ∈ E(K ) such that Q ∈ 〈P〉, Q 6= O, and
ord(P) ≥ 4.

Problem (EDS Association)
Determine WE ,P(k) for the value of 0 < k < ord(P) such that
Q = [k ]P.

Problem (EDS Residue)
Determine the quadratic residuosity of WE ,P(k) for the value of
0 < k < ord(P) such that Q = [k ]P.
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Equivalence of problems

Theorem (S,L)
Let E be an elliptic curve over a finite field K =q of
characteristic 6= 2. If any one of the following problems is
solvable in probabilistic sub-exponential time, then all of them
are:

1. ECDLP
2. EDS Association for non-perfectly periodic sequences
3. Width 3 EDS Discrete Log for perfectly periodic sequences

In addition, the previous problems are equivalent to the
following one in the case that E(Fq) is of odd order.

4. EDS Residue for non-perfectly periodic sequences

(perfectly periodic: period equal to order of point aka rank of
apparition)
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Is this talk about combinatorics?

• combinatorial interpretations?

• Laurentness and positivity?
• You tell me.
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