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Amicable Pairs
Definition
Let E be an elliptic curve defined over Q. A pair (p, q) of primes
is called an amicable pair for E if

#E(Fp) =q. and #E(Fq) = p.



Definitions and conjectures

Amicable Pairs
Definition
Let E be an elliptic curve defined over Q. A pair (p, q) of primes
is called an amicable pair for E if

#E(Fp) =q. and #E(Fq) = p.
Example
y? + y = x® — x has one amicable pair with p, g < 10”:
(1622311,1622471)
y? + y = x® 4 x? has four amicable pairs with p, g < 10”:

(853,883), (77761,77999),
(1147339,1148359), (1447429, 1447561).
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Questions

Question (1)
Let

Qr(X) = #{amicable pairs (p, q) such thatp,q < X}

How does Qg(X) grow with X ?
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Questions

Question (1)
Let

Qr(X) = #{amicable pairs (p, q) such thatp,q < X}
How does Qg (X) grow with X ?
Question (2)
Let

NEe(X) = #{primes p < X such that #E(F,) is prime}
What about Qg (X)/Ne(X)?



Definitions and conjectures

NE(X)

Let E/Q be an elliptic curve, and let

Ne(X) = #{primes p < X such that #E(F,) is prime}.

Conjecture (Koblitz, Zywina)
There is a constant Cg g such that

X
Ne(X) ~ Ce /1o X2

Further, Cgq > 0 if and only if there are infinitely many
primes p such that #Ep(F,) is prime.

Ce/q can be zero (e.g. if E/Q has rational torsion).
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Heuristic

Prob(p is part of an amicable pair)

= Prob(g &' #E(Fp) is prime) Prob(#E(Fq) = p).
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Definitions and conjectures

Heuristic

Prob(p is part of an amicable pair)

= Prob(g &' #E(Fp) is prime) Prob(#E(Fq) = p).

Conjecture of Koblitz and Zywina:

o 1
Prob(#E(Fp) is prime) >< logp’

Rough estimate using Sato—Tate conjecture:
1 1
Prob(#E(Fg) = p) >< — ~ —.
Together:

Prob(p is part of an amicable pair) >«

]
vP(logp)’
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Growth of Qg(X)

Qe(X) = Z Prob(p is part of an amicable pair )
p<X

1
>< 2 Jnllogp)

p<X

VX

> W

Final remarks



Definitions and conjectures The CM case Aliquot cycles The j = 0 case Final remarks

Conjectures

Conjecture (Version 1)
Let E/Q be an elliptic curve, let

Qr(X) = #{amicable pairs (p, q) such thatp,q < X}

Assume infinitely many primes p such that #E(Fp) is prime.
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Conjectures

Conjecture (Version 1)
Let E/Q be an elliptic curve, let

Qr(X) = #{amicable pairs (p, q) such thatp,q < X}
Assume infinitely many primes p such that #E(Fp) is prime.

Then NG
QE(X) > W

where the implied constants depend on E.

as X — oo,



The CM case

Another example

y2 +y = x3 — x has one amicable pair with p, g < 107:
(1622311,1622471)
y? + y = x® 4 x? has four amicable pairs with p, g < 10”:

(853,883), (77761,77999),
(1147339, 1148359), (1447429,1447561).



The CM case

Another example

y2 +y = x3 — x has one amicable pair with p, g < 107:
(1622311,1622471)
y? + y = x® 4 x? has four amicable pairs with p, g < 10”:

(853,883), (77761,77999),
(1147339, 1148359), (1447429,1447561).

y? = x3 + 2 has 5578 amicable pairs with p, g < 107:

(13,19), (139, 163), (541,571), (613, 661), (757, 787), . ...



The CM case

CM case: Twist Theorem

Theorem

Let E/Q be an elliptic curve with complex multiplication by an
order O in a quadratic imaginary field K = Q(v/—D), with

Je # 0. Suppose that p and q are primes of good reduction
for E withp > 5 and q = #E(Fp).
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CM case: Twist Theorem

Theorem

Let E/Q be an elliptic curve with complex multiplication by an
order O in a quadratic imaginary field K = Q(v/—D), with

Je # 0. Suppose that p and q are primes of good reduction
for E withp > 5 and q = #E(Fp).

Then either

#E(Fq)=p or #E(Fq)=2g9+2-p.



The CM case

CM case: Twist Theorem

Theorem

Let E/Q be an elliptic curve with complex multiplication by an
order O in a quadratic imaginary field K = Q(v/—D), with

Je # 0. Suppose that p and q are primes of good reduction
for E withp > 5 and q = #E(Fp).

Then either
#E(Fq)=p or #E(Fq)=2g9+2-p.

In the latter case, #E(Fq) = p for the non-trivial quadratic twist
E of E over Iy,
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CM case: Twist Theorem proof
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CM case: Twist Theorem proof

Eliminating curves with 2-torsion leaves D =3 mod 4.
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p splits as p = pp (if it were inert, we would have supersingular
reduction, #E(Fp) = p+1).
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#E(Fp) = N(W(p)) +1 — Tr(V(p)) where WV is the
Grossencharacter of E.
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The CM case

CM case: Twist Theorem proof
Eliminating curves with 2-torsion leaves D =3 mod 4.

p splits as p = pp (if it were inert, we would have supersingular
reduction, #E(Fp) = p+1).

#E(Fp) = N(W(p)) +1 — Tr(V(p)) where WV is the
Grossencharacter of E.

N(1 —V(p)) = #E(Fy) = #E(Fp) = g so g splits as g = qq.
N(V(q)) = q.

So 1 —V(p) = uV¥(q) for some unit u € {£1}.

TH(W(q)) = £Tr(1 = W(p)) = (2 = TH(W(p))) = (g +1-p).



The CM case

CM case: Twist Theorem proof
Eliminating curves with 2-torsion leaves D =3 mod 4.

p splits as p = pp (if it were inert, we would have supersingular
reduction, #E(Fp) = p+1).

#E(Fp) = N(W(p)) +1 — Tr(V(p)) where WV is the
Grossencharacter of E.

N(1 —V(p)) = #E(Fp) = #E(Fp) = g so g splits as q = qq.
N(V¥(q)) = q.
So 1 —V(p) = uV¥(q) for some unit u € {£1}.
Tr(W(q)) = £Tr(1 = V(p)) = £(2 = Tr(V(p))) = £(@+ 1 - p).
So...

#E(Fq)=p  or #E(Fq) =29+2—p.



The CM case

Twist frequencies for CM case
L (.| B3] 11 ] (19,1 ]| (43,1)] (67,1) | (163,1) |
x=10*] 18 8| 17| 42 48 66
X=105| 124| 48| 103| =205| 245| 395
X=10% 804| 303| 709| 1330 | 1671 | 2709
X =107 | 5581 | 2267 | 5026 | 9353 | 12190 | 19691

Table: Qg(X) for elliptic curves with CM by Q(v/—D)
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Twist frequencies for CM case

|

(D.f) | 33) ] (11,1) | (19,1) | 43,1) | (67,1) | (163,1) |

X =10* 18 8 17 42 48 66

X =10° 124 48 103 205 245 395

X =108 | 804 303 709 | 1330 | 1671 2709

X =107 | 5581 | 2267 | 5026 | 9353 | 12190 | 19691

Table: Qg(X) for elliptic curves with CM by Q(v/—D)

|

(D.f) | 33) ] (11.1) | (19.1) | (43,1) | (67.1) | (163,1) |

X =10*|0.217 | 0.250 | 0.233 | 0.300 | 0.247 | 0.237

X =10°| 0.251 | 0.238 | 0.248 | 0.260 | 0.238 | 0.246

X =108 | 0.250 | 0.247 | 0.253 | 0.255 | 0.245 | 0.247

X =107 || 0.249 | 0.251 | 0.250 | 0.251 | 0.250 | 0.252

Table: Qg(X)/Ng(X) for elliptic curves with CM by Q(v/—D)
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Conjectures

Conjecture (Version 2)
Let E/Q be an elliptic curve, let

Qf(X) = #{amicable pairs (p, q) such thatp,q < X}

Assume infinitely many primes p such that #E(Fy) is prime.
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Conjectures

Conjecture (Version 2)
Let E/Q be an elliptic curve, let

Qf(X) = #{amicable pairs (p, q) such thatp,q < X}

Assume infinitely many primes p such that #E(Fy) is prime.

(a) If E does not have complex multiplication, then

VX

QE(X) >L W

as X — oo,

where the implied constants depend on E.



The CM case

Conjectures

Conjecture (Version 2)
Let E/Q be an elliptic curve, let

Qf(X) = #{amicable pairs (p, q) such thatp,q < X}

Assume infinitely many primes p such that #E(Fy) is prime.

(a) If E does not have complex multiplication, then

VX

W aSX—>OO,

Qe(X) >«

where the implied constants depend on E.

(b) If E has complex multiplication, then there is a
constant Ag > 0 such that
X

1



Aliquot cycles

Aliquot cycles
Definition
Let E/Q be an elliptic curve. An aliquot cycle of length ¢

for E/Q is a sequence of distinct primes (p1, p2, . . ., p¢) such
that E has good reduction at every p; and such that

#E(FM) = P2, #E(sz) = P3,
#E(Fpe—1) = Py, #E(Fpé) = Pp1.
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for E/Q is a sequence of distinct primes (p1, p2, . . ., p¢) such
that E has good reduction at every p; and such that

#E(FM) = P2, #E(sz) = P3,
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Example
y? =x3—25x — 8:(83,79,73)



Aliquot cycles

Aliquot cycles

Definition

Let E/Q be an elliptic curve. An aliquot cycle of length ¢

for E/Q is a sequence of distinct primes (p1, p2, . . ., p¢) such
that E has good reduction at every p; and such that

#E(FM) = P2, #E(sz) = P3,
#E(Fpe—1) = Py, #E(Fpé) = Pp1.

Example
y? =x3—25x — 8:(83,79,73)

y? = x3 +176209333661915432764478x+
60625229794681596832262 :

(23,31,41,47,59,67,73,79,71,61,53, 43,37, 29)
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No longer aliquot cycles in CM case

Theorem
A CM elliptic curve E/Q with j(E) # 0 has no aliquot cycles of
length ¢ > 3 consisting of primes p > 5.
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No longer aliquot cycles in CM case

Theorem
A CM elliptic curve E/Q with j(E) # 0 has no aliquot cycles of
length ¢ > 3 consisting of primes p > 5.

Proof (sketch).

Postulate a cycle py, ..., ps (for a contradiction). Use CM
theorem on pairs to write a linear recurrence relation for p,.
See that it is strictly monotonic. O
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CM j = 0 case: Twist Theorem

K=Q(V-38), s C Ok =2Z[w]



The j = 0 case

CM j = 0 case: Twist Theorem
K=Q(V-38),  usC Ok =2Zlw]

Theorem

Let E/Q be the elliptic curve y?> = x® + k, and suppose that p
and q are primes of good reduction for E withp > 5

and q = #E(Fp). Then p splits in K, and we write pOk = pp.
Define q = (1 — W(p)) Ok. Then we have qOk = qq.

The values of the Gréssencharacter at p and q are related by

= (8), (8,0

Finally, #E(F) = p if and only if (%)6 (%)6 —1,



The j = 0 case

Data on twist frequencies

k| 2] 3] 5] 6] 7] 10

X =10*|0.217 | 0.141 | 0.097 | 0.085 | 0.165 | 0.118

X =10°| 0.251 | 0.122 | 0.081 | 0.134 | 0.139 | 0.125

X =108 || 0.250 | 0.139 | 0.083 | 0.142 | 0.133 | 0.107

X =107 || 0.249 | 0.139 | 0.082 | 0.139 | 0.129 | 0.107

Table: Qg(X)/Nge(X) for elliptic curves y2 = x3 + k

1/12 = 0.08333. ..
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Applying Cubic Reciprocity

Let E be the curve y? = x® + k and suppose # E,(Fp) is prime.

(W‘:((p)>e (1 —‘Ilfg(p))e

_ i(wg(p)u - wE(p))>31 .




The j = 0 case

Applying Cubic Reciprocity

Let E be the curve y? = x® + k and suppose # E,(Fp) is prime.

(\Ui’((p)>e (1 —‘Ilfg(p))e

_ i(wg(p)u - wE(p)>>31 .

Let M(k) be the number of elements in Ox/kOk for which
m(1 — m) is invertible.
Let M*(k) be the number of those also satisfying

(M)azt

Then we may expect

Qe(X)/Ne(X) — M*(k)/4M(k).
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The symbol ( m(i ’")> when k=2 mod 3

The curve E : y(1 —y) = x® has j = 0.
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The symbol (M)S when k=2 mod 3

The curve E : y(1 —y) = x® has j = 0.

Then E is supersingular modulo k and has (k + 1)? points over
FKOK = sz.
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The symbol (m(1km)>3 when k=2 mod 3

The curve E : y(1 —y) = x® has j = 0.

Then E is supersingular modulo k and has (k + 1)? points over
FkOK = sz.

Removing 3 points (oo, (0,0) and (0, 1)), the remaining points

have y # 0,1 and (@)3 =1.



The j = 0 case

The symbol (m(1km)>3 when k=2 mod 3

The curve E: y(1 — y) = x® has j = 0.

Then E is supersingular modulo k and has (k + 1)? points over
FkOK = sz.

Removing 3 points (o, (0,0) and (0, 1)), the remaining points
have y # 0,1 and ( v ”)3 =1.

Therefore, ((k 4 1)? — 3)/3 is the number of residues m # 0, 1
modulo kOx having (M>3 =1.
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Conjecture for j = 0 with k prime

o Q(X) 1 1
A Nx) ~ 6 T 2Rt

where R(k) depends on k (mod 36) and is given by:

kmod36| R(K) kmod36| R(K)
2 >

__c 17 __c

) 35| 30—
13, 25 0 5, 29 0
ok ok

_ 2k 11,28 | 2K

731 gk —op R E )




The j = 0 case

Data for j = 0 as k varies

Density of Type I/Il

61 (b.1
67(d1
1 (c.

28027 55816 168197 0.251 0.3318
29242 57944 168239 0.253 0.3444
28789 57661 168508 0.249 0.3422

l k “ Qk(X) [ N,£1)(X) [ Nk (X) [ Q/N(” exper't [ conjecture
5 (b.2) 29340 58594 175703 0.251 0.3335 13 = 0.3333
7 (d.1) 43992 87825 168743 0.251 0.5205 % = 0.5200

11 (d.2) 33721 66698 169062 0.253 0.3945 {% = 0.3950
13 (b.1) 28036 55766 167333 0.252 0.3333 7 = 0.3333
17 (a.2) 32008 63810 169226 0.251 0.3771 5 = 0.3750
19 (c.1) 31729 63066 168196 0.252 0.3750 < = 0.3750
23 (d.2) 30480 61210 168512 0.249 0.3632 ;é% = 0.3624
29 (b.2) 28085 56286 168642 0.249 0.3338 1 -0.3333
31 (d.1) 30301 60349 168344 0.251 0.3585 %% = 0.3579
37 (a.1) 29728 59430 168471 0.250 0.3528 i7 = 0.3529
41 (b.2) 28050 56381 168567 0.249 0.3345
43 (d.1) 29619 58807 168410 0.252 0.3492
47 (d.2) 29220 58400 168365 0.250 0.3469
53 (a.2) 29278 58257 168353 0.252 0.3460
59 (d.2) 29378 58422 168783 0.252 0.3461

)

)

2)

Table: Density of Amicable and Type I/Il primes with p < X = 108 for
the curve y2 = x3 + k, prime k.
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coming out to simple rational functions of k (all the point
counting cancels). We don’t have a simple explanation for this.
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Smyth recently studied this for Lucas sequences.
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Final Remarks

1. The predictions, even for the very complicated cases, are
coming out to simple rational functions of k (all the point
counting cancels). We don’t have a simple explanation for this.

2. One might look at this as a dynamical system: define a, as
in the L-series L(E/Q, s) = >_ -1 a»/n®, and iterate the
function f(n) = n+ 1 — a, (future work).

3. This question arises naturally from a question about when
n|W, for an elliptic divisibility sequence (also work-in-progress).
Smyth recently studied this for Lucas sequences.

4. We're currently running large searches to test the non-CM
conjecture.
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