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Amicable Pairs
Definition
Let E be an elliptic curve defined over Q. A pair (p,q) of primes
is called an amicable pair for E if

#E(Fp) = q, and #E(Fq) = p.

Example
y2 + y = x3 − x has one amicable pair with p,q < 107:

(1622311,1622471)

y2 + y = x3 + x2 has four amicable pairs with p,q < 107:

(853,883), (77761,77999),

(1147339,1148359), (1447429,1447561).
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Questions

Question (1)
Let

QE (X ) = #
{

amicable pairs (p,q) such that p,q < X
}

How does QE (X ) grow with X?

Question (2)
Let

NE (X ) = #
{

primes p ≤ X such that #E(Fp) is prime
}

What about QE (X )/NE (X )?



Definitions and conjectures The CM case Aliquot cycles The j = 0 case Final remarks

Questions

Question (1)
Let

QE (X ) = #
{

amicable pairs (p,q) such that p,q < X
}

How does QE (X ) grow with X?

Question (2)
Let

NE (X ) = #
{

primes p ≤ X such that #E(Fp) is prime
}

What about QE (X )/NE (X )?



Definitions and conjectures The CM case Aliquot cycles The j = 0 case Final remarks

NE(X )

Let E/Q be an elliptic curve, and let

NE (X ) = #
{

primes p ≤ X such that #E(Fp) is prime
}
.

Conjecture (Koblitz, Zywina)
There is a constant CE/Q such that

NE (X ) ∼ CE/Q
X

(log X )2 .

Further, CE/Q > 0 if and only if there are infinitely many
primes p such that #Ep(Fp) is prime.

CE/Q can be zero (e.g. if E/Q has rational torsion).
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Heuristic

Prob(p is part of an amicable pair)

= Prob(q def
= #E(Fp) is prime) Prob(#E(Fq) = p).

Conjecture of Koblitz and Zywina:

Prob(#E(Fp) is prime)�� 1
log p

,

Rough estimate using Sato–Tate conjecture:

Prob(#E(Fq) = p)�� 1
√

q
∼ 1
√

p
.

Together:

Prob(p is part of an amicable pair)�� 1
√

p(log p)
.
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Growth of QE(X )

QE (X ) ≈
∑
p≤X

Prob(p is part of an amicable pair )

��
∑
p≤X

1
√

p(log p)

��
√

X
(log X )2 .
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Conjectures

Conjecture (Version 1)
Let E/Q be an elliptic curve, let

QE (X ) = #
{

amicable pairs (p,q) such that p,q < X
}

Assume infinitely many primes p such that #E(Fp) is prime.

Then
QE (X )��

√
X

(log X )2 as X →∞,

where the implied constants depend on E.
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Another example

y2 + y = x3 − x has one amicable pair with p,q < 107:

(1622311,1622471)

y2 + y = x3 + x2 has four amicable pairs with p,q < 107:

(853,883), (77761,77999),

(1147339,1148359), (1447429,1447561).

y2 = x3 + 2 has 5578 amicable pairs with p,q < 107:

(13,19), (139,163), (541,571), (613,661), (757,787), . . . .
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CM case: Twist Theorem

Theorem
Let E/Q be an elliptic curve with complex multiplication by an
order O in a quadratic imaginary field K = Q(

√
−D), with

jE 6= 0. Suppose that p and q are primes of good reduction
for E with p ≥ 5 and q = #E(Fp).

Then either

#E(Fq) = p or #E(Fq) = 2q + 2− p.

In the latter case, #Ẽ(Fq) = p for the non-trivial quadratic twist
Ẽ of E over Fq.
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CM case: Twist Theorem proof

Eliminating curves with 2-torsion leaves D ≡ 3 mod 4.

p splits as p = pp (if it were inert, we would have supersingular
reduction, #E(Fp) = p + 1).

#E(Fp) = N(Ψ(p)) + 1− Tr(Ψ(p)) where Ψ is the
Grössencharacter of E .

N(1−Ψ(p)) = #E(Fp) = #E(Fp) = q so q splits as q = qq.

N(Ψ(q)) = q.

So 1−Ψ(p) = uΨ(q) for some unit u ∈ {±1}.

Tr(Ψ(q)) = ±Tr(1−Ψ(p)) = ±(2− Tr(Ψ(p))) = ±(q + 1− p).

So...

#E(Fq) = p or #E(Fq) = 2q + 2− p.
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Twist frequencies for CM case
(D, f ) (3,3) (11,1) (19,1) (43,1) (67,1) (163,1)

X = 104 18 8 17 42 48 66

X = 105 124 48 103 205 245 395

X = 106 804 303 709 1330 1671 2709

X = 107 5581 2267 5026 9353 12190 19691

Table: QE (X ) for elliptic curves with CM by Q(
√
−D)

(D, f ) (3,3) (11,1) (19,1) (43,1) (67,1) (163,1)

X = 104 0.217 0.250 0.233 0.300 0.247 0.237

X = 105 0.251 0.238 0.248 0.260 0.238 0.246

X = 106 0.250 0.247 0.253 0.255 0.245 0.247

X = 107 0.249 0.251 0.250 0.251 0.250 0.252

Table: QE (X )/NE (X ) for elliptic curves with CM by Q(
√
−D)
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Conjectures
Conjecture (Version 2)
Let E/Q be an elliptic curve, let

QE (X ) = #
{

amicable pairs (p,q) such that p,q < X
}

Assume infinitely many primes p such that #E(Fp) is prime.

(a) If E does not have complex multiplication, then

QE (X )��
√

X
(log X )2 as X →∞,

where the implied constants depend on E.

(b) If E has complex multiplication, then there is a
constant AE > 0 such that

QE (X ) ∼ 1
4
NE (X ) ∼ AE

X
(log X )2 .
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Aliquot cycles
Definition
Let E/Q be an elliptic curve. An aliquot cycle of length `
for E/Q is a sequence of distinct primes (p1,p2, . . . ,p`) such
that E has good reduction at every pi and such that

#E(Fp1) = p2, #E(Fp2) = p3, . . .

#E(Fp`−1) = p`, #E(Fp`
) = p1.

Example
y2 = x3 − 25x − 8 : (83,79,73)

y2 = x3 + 176209333661915432764478x+

60625229794681596832262 :

(23,31,41,47,59,67,73,79,71,61,53,43,37,29)



Definitions and conjectures The CM case Aliquot cycles The j = 0 case Final remarks

Aliquot cycles
Definition
Let E/Q be an elliptic curve. An aliquot cycle of length `
for E/Q is a sequence of distinct primes (p1,p2, . . . ,p`) such
that E has good reduction at every pi and such that

#E(Fp1) = p2, #E(Fp2) = p3, . . .

#E(Fp`−1) = p`, #E(Fp`
) = p1.

Example
y2 = x3 − 25x − 8 : (83,79,73)

y2 = x3 + 176209333661915432764478x+

60625229794681596832262 :

(23,31,41,47,59,67,73,79,71,61,53,43,37,29)



Definitions and conjectures The CM case Aliquot cycles The j = 0 case Final remarks

Aliquot cycles
Definition
Let E/Q be an elliptic curve. An aliquot cycle of length `
for E/Q is a sequence of distinct primes (p1,p2, . . . ,p`) such
that E has good reduction at every pi and such that

#E(Fp1) = p2, #E(Fp2) = p3, . . .

#E(Fp`−1) = p`, #E(Fp`
) = p1.

Example
y2 = x3 − 25x − 8 : (83,79,73)

y2 = x3 + 176209333661915432764478x+

60625229794681596832262 :

(23,31,41,47,59,67,73,79,71,61,53,43,37,29)



Definitions and conjectures The CM case Aliquot cycles The j = 0 case Final remarks

No longer aliquot cycles in CM case

Theorem
A CM elliptic curve E/Q with j(E) 6= 0 has no aliquot cycles of
length ` ≥ 3 consisting of primes p ≥ 5.

Proof (sketch).
Postulate a cycle p1, . . . ,p` (for a contradiction). Use CM
theorem on pairs to write a linear recurrence relation for p`.
See that it is strictly monotonic.



Definitions and conjectures The CM case Aliquot cycles The j = 0 case Final remarks

No longer aliquot cycles in CM case

Theorem
A CM elliptic curve E/Q with j(E) 6= 0 has no aliquot cycles of
length ` ≥ 3 consisting of primes p ≥ 5.

Proof (sketch).
Postulate a cycle p1, . . . ,p` (for a contradiction). Use CM
theorem on pairs to write a linear recurrence relation for p`.
See that it is strictly monotonic.



Definitions and conjectures The CM case Aliquot cycles The j = 0 case Final remarks

CM j = 0 case: Twist Theorem

K = Q(
√
−3), µ6 ⊂ OK = Z[ω]

Theorem
Let E/Q be the elliptic curve y2 = x3 + k, and suppose that p
and q are primes of good reduction for E with p ≥ 5
and q = #E(Fp). Then p splits in K , and we write pOK = pp.
Define q =

(
1−Ψ(p)

)
OK . Then we have qOK = qq.

The values of the Grössencharacter at p and q are related by

1−Ψ(p) =

(
4k
p

)
6

(
4k
q

)
6

Ψ(q).

Finally, #E(Fq) = p if and only if
(

4k
p

)
6

(
4k
q

)
6

= 1.
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Data on twist frequencies

k 2 3 5 6 7 10

X = 104 0.217 0.141 0.097 0.085 0.165 0.118

X = 105 0.251 0.122 0.081 0.134 0.139 0.125

X = 106 0.250 0.139 0.083 0.142 0.133 0.107

X = 107 0.249 0.139 0.082 0.139 0.129 0.107

Table: QE (X )/NE (X ) for elliptic curves y2 = x3 + k

1/12 = 0.08333 . . .
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Applying Cubic Reciprocity
Let E be the curve y2 = x3 + k and suppose #Ẽp(Fp) is prime.(

4k
ΨE (p)

)
6

(
4k

1−ΨE (p)

)
6

= · · ·

= ±
(

ΨE (p)(1−ΨE (p))

k

)−1

3
.

Let M(k) be the number of elements in OK/kOK for which
m(1−m) is invertible.
Let M∗(k) be the number of those also satisfying(

m(1−m)
k

)
3

= 1.
Then we may expect

QE (X )/NE (X )→ M∗(k)/4M(k).
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The symbol
(

m(1−m)
k

)
3

when k ≡ 2 mod 3

The curve E : y(1− y) = x3 has j = 0.

Then E is supersingular modulo k and has (k + 1)2 points over
FkOK = Fk2 .

Removing 3 points (∞, (0,0) and (0,1)), the remaining points
have y 6= 0,1 and

(
y(1−y)

k

)
3

= 1.

Therefore, ((k + 1)2 − 3)/3 is the number of residues m 6= 0,1
modulo kOK having

(
m(1−m)

k

)
3

= 1.
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Conjecture for j = 0 with k prime

lim
X→∞

Qk (X )

Nk (X )
=

1
6

+
1
2

R(k),

where R(k) depends on k (mod 36) and is given by:

k mod 36 R(k)

1, 19
2

3(k − 3)

13, 25 0

7, 31
2k

3(k − 2)2

k mod 36 R(k)

17, 35
2

3(k − 1)

5, 29 0

11, 23
2k

3(k2 − 2)
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Data for j = 0 as k varies
Density of Type I/II

k Qk (X) N (1)
k (X) Nk (X) Q/N (1) exper’t conjecture

5 (b.2) 29340 58594 175703 0.251 0.3335 1
3 = 0.3333

7 (d.1) 43992 87825 168743 0.251 0.5205 13
25 = 0.5200

11 (d.2) 33721 66698 169062 0.253 0.3945 47
119 = 0.3950

13 (b.1) 28036 55766 167333 0.252 0.3333 1
3 = 0.3333

17 (a.2) 32008 63810 169226 0.251 0.3771 3
8 = 0.3750

19 (c.1) 31729 63066 168196 0.252 0.3750 3
8 = 0.3750

23 (d.2) 30480 61210 168512 0.249 0.3632 191
527 = 0.3624

29 (b.2) 28085 56286 168642 0.249 0.3338 1
3 = 0.3333

31 (d.1) 30301 60349 168344 0.251 0.3585 301
841 = 0.3579

37 (a.1) 29728 59430 168471 0.250 0.3528 6
17 = 0.3529

41 (b.2) 28050 56381 168567 0.249 0.3345 1
3 = 0.3333

43 (d.1) 29619 58807 168410 0.252 0.3492 589
1681 = 0.3504

47 (d.2) 29220 58400 168365 0.250 0.3469 767
2207 = 0.3475

53 (a.2) 29278 58257 168353 0.252 0.3460 9
26 = 0.3462

59 (d.2) 29378 58422 168783 0.252 0.3461 1199
3479 = 0.3446

61 (b.1) 28027 55816 168197 0.251 0.3318 1
3 = 0.3333

67 (d.1) 29242 57944 168239 0.253 0.3444 1453
4225 = 0.3439

71 (c.2) 28789 57661 168508 0.249 0.3422 12
35 = 0.3429

Table: Density of Amicable and Type I/II primes with p ≤ X = 108 for
the curve y2 = x3 + k , prime k .
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Final Remarks

1. The predictions, even for the very complicated cases, are
coming out to simple rational functions of k (all the point
counting cancels). We don’t have a simple explanation for this.

2. One might look at this as a dynamical system: define an as
in the L-series L(E/Q, s) =

∑
n≥1 an/ns, and iterate the

function f (n) = n + 1− an (future work).

3. This question arises naturally from a question about when
n|Wn for an elliptic divisibility sequence (also work-in-progress).
Smyth recently studied this for Lucas sequences.

4. We’re currently running large searches to test the non-CM
conjecture.
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