Elliptic Divisibility Sequences in Computation

Katherine E. Stange

Department of Mathematics, Simon Fraser University, and Pacific Institute of the Mathematical Sciences, University of British Columbia

> CMS Winter Meeting 2010, Computational Number Theory Session, Vancouver, December 4, 2010

> > (日)
> > (日)
> > (日)
> > (日)
> > (日)
> > (日)
> > (日)
> > (日)
> > (日)
> > (日)
> > (日)
> > (日)
> >
> > (日)
> >
> > (日)
> > (日)
> >
> > (日)
> > </p

Division Polynomials

Consider a point P = (x, y) and its multiples on an elliptic curve $E : y^2 = x^3 + Ax + B$. Then

$$[n]P = \left(\frac{\phi_n(P)}{\Psi_n(P)^2}, \frac{\omega_n(P)}{\Psi_n(P)^3}\right)$$

where

$$\begin{split} \Psi_1 &= 1, \qquad \Psi_2 = 2y, \\ \Psi_3 &= 3x^4 + 6Ax^2 + 12Bx - A^2, \\ \Psi_4 &= 4y(x^6 + 5Ax^4 + 20Bx^3 - 5A^2x^2 - 4ABx - 8B^2 - A^3), \\ \Psi_{m+n}\Psi_{m-n}\Psi_1^2 &= \Psi_{m+1}\Psi_{m-1}\Psi_n^2 - \Psi_{n+1}\Psi_{n-1}\Psi_m^2 \;. \end{split}$$

Anything satisfying this recurrence relation I'll call an *elliptic* divisibility sequence. In particular, if we evaluate at P, we get the *elliptic divisibility sequence* associated to E and P.

Example: $y^2 + y = x^3 + x^2 - 2x$, P = (0, 0)

$$P = (0,0) \qquad W_1 = +1$$

$$[2]P = (3,5) \qquad W_2 = +1$$

$$[3]P = \left(-\frac{11}{3^2}, \frac{28}{3^3}\right) \qquad W_3 = -3$$

$$[4]P = \left(\frac{114}{11^2}, -\frac{267}{11^3}\right) \qquad W_4 = +11$$

$$[5]P = \left(-\frac{2739}{38^2}, -\frac{77033}{38^3}\right) \qquad W_5 = +38$$

$$[6]P = \left(\frac{89566}{249^2}, -\frac{31944320}{249^3}\right) \qquad W_6 = +249$$

$$[7]P = \left(-\frac{2182983}{2357^2}, -\frac{20464084173}{2357^3}\right) \qquad W_7 = -2357$$

Note: W_n is a function of n and P, not just [n]P!

Elliptic Nets

On an elliptic curve $E: y^2 = x^3 + Ax + B$, with points P and Q,

$$[n]P + [m]Q = \left(\frac{\phi_{n,m}(P,Q)}{\Psi_{n,m}(P,Q)^2}, \frac{\omega_{n,m}(P,Q)}{\Psi_{n,m}(P,Q)^3}\right)$$

٠

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Consider the array of $\Psi_{n,m}(P,Q)$.

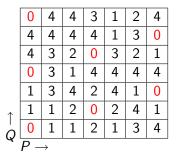
Example: $E: y^2 + y = x^3 + x^2 - 2x$; P = (0, 0), Q = (1, 0)

	4335	5959	12016	-55287	23921	1587077
	94	479	919	- 2591	13751	68428
	- 31	53	-33	-350	493	6627
	-5	8	-19	- 41	- 151	989
↑	1	3	-1	- 13	-36	181
	1	1	2	-5	7	89
$\left {{Q}} \right $	0	1	1	-3	11	38
ų.	$\overline{P} \rightarrow$		•		•	

Example over \mathbb{F}_5

$$E: y^2 + y = x^3 + x^2 - 2x; P = (0,0), Q = (1,0).$$

 $W_P(n): 0, 1, 1, 2, 1, 3, 4, 3, 2, 0, 3, 2, 1, 2, 4, 3, 4, 4, 0, 1, 1, 1, 2, 1, 3, 4, \dots$



 $\blacktriangleright \Psi_n(P) = 0 \iff [n]P = \mathcal{O}$

$$\blacktriangleright \ \Psi_{\mathbf{v}}(\mathbf{P}) = 0 \iff \mathbf{v} \cdot \mathbf{P} = 0.$$

Zeroes lie in *lattice of apparition* associated to prime (here, 5).

Definition of an elliptic net

Definition (S)

Let K be a field. An *elliptic net* is a map $W : A \to K$ such that the following recurrence holds for all p, q, r, $s \in \mathbb{Z}^n$.

$$W(p+q+s)W(p-q)W(r+s)W(r)$$

+ $W(q+r+s)W(q-r)W(p+s)W(p)$
+ $W(r+p+s)W(r-p)W(q+s)W(q) = 0$

- Elliptic divisibility sequences are a special case (n = 1)
- The recurrence generates the net from finitely many initial values.

Curve-net bijection

Theorem (S.)

There is a bijection of partially ordered sets:

 $\begin{cases} elliptic net \\ W : \mathbb{Z}^n \to K \\ modulo \ scale \\ equivalence \end{cases} \leftrightarrow \begin{cases} cubic \ Weierstrass \ curve \ C \ over \ K \\ together \ with \ n \ points \ in \ C(K) \\ modulo \ change \ of \ variables \\ x' = x + r, y' = y + sx + t \end{cases}$

- \blacktriangleright $W(\mathbf{v}) = \Psi_{\mathbf{v}}(P_1, \ldots, P_n, C)$
- explicit equations to go back and forth!
- singular cubics correspond to Lucas sequences or integers
- scale equivalence: $W \sim W' \iff W(\mathbf{v}) = f(\mathbf{v})W'(\mathbf{v})$ for $f: \mathbb{Z}^n \to K^*$ quadratic
- on left, remove nets with zeroes too close to the origin

on right, remove cases with small torsion points or pairs which are equal or inverses

consider only nets with $W(\mathbf{v}) = 1$ for $\mathbf{v} = \mathbf{e}_i$ or $\mathbf{v} = \mathbf{e}_i + \mathbf{e}_i$

Group Law

Computing terms of W_n (Rachel Shipsey):

- Work with blocks of terms of length 7.
- Double-and-add (block near index n gives block near index 2n or 2n + 1 in a fixed finite number of multiplications.
- Compute W_n in $O(\log n)$.

Recover [n]P from W_n :

$$x(P) - x([k]P) = \frac{W_{k+1}W_{k-1}}{W_k^2}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

For higher rank elliptic nets, it is possible to create similar algorithms. (Implemented in Pari/Sage for rank 2.)

Canonical Height

Let W_n be the elliptic divisibility sequence associated to E and integral P. Then the canonical height and its local parts are given by (Everest, Ward):

$$\hat{h}(P) = \lim_{N \to \infty} \frac{1}{N^2} \log \left(|W_N|_{\infty} \prod_{p \mid \Delta} |W_N|_p \right)$$
$$\hat{h}_{\infty}(P) = \lim_{N \to \infty} \frac{1}{N^2} \log |W_N|_{\infty} - \frac{1}{12} \log |\Delta|_{\infty}$$

p of good reduction:

$$\hat{h}_p(P) = 0$$

p of bad reduction:

$$\hat{h}_p(P) = \lim_{N o \infty} rac{1}{N^2} \log |W_N|_p - rac{1}{12} \log |\Delta|_p$$

Reduction modulo primes

Possibly change W_n to $\lambda^{n^2-1}W_n$ for some $\lambda \in \mathbb{Z}$. Then $(p \neq 2)$,

1. For primes of good reduction, $p \mid W_n \iff [n]P = \mathcal{O} \mod p$. Let *r* be the least positive integer such that $\nu_p(W_r) > 0$. Then

$$\nu_p(W_{mr}) = \nu_p(m) + \nu_p(W_r).$$

2. For primes not having potential good reduction, (S)

$$\nu_{p}(W_{n}) = \frac{\ell}{2} \left(B_{2} \left(\frac{na}{\ell} - \left\lfloor \frac{na}{\ell} \right\rfloor \right) - n^{2} B_{2} \left(\frac{a}{\ell} - \left\lfloor \frac{a}{\ell} \right\rfloor \right) + \frac{(n^{2} - 1)}{6} \right)$$

where $B_2(t) = t^2 - t + \frac{1}{6}$, where $\ell = \nu_p(\Delta)$ and *P* extends to component *a* of the singular fibre of the Néron model.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Integral points

Theorem (Mohamed Ayad): Let S be the set of primes at which P becomes singular under reduction. If P is integral, then [n]P is integral exactly when

$$\nu_p(W_n) \neq 0 \iff p \in S.$$

Patrick Ingram uses elliptic divisibility sequences to give bounds on the size of n such that [n]P is integral.

Pairing from Elliptic Nets

$$m \ge 1$$
 $P \in E(K)[m]$
 E/K an elliptic curve $Q \in E(K)/mE(K)$

Theorem (S)

Choose $S \in E(K)$ such that $S \notin \{\mathcal{O}, -Q\}$. Let W be an elliptic net with basis \mathbf{T} such that $p \cdot \mathbf{T} = P$, $q \cdot \mathbf{T} = Q$ and $s \cdot \mathbf{T} = S$. Then the quantity

$$au_m(P,Q) = rac{W(s+mp+q)W(s)}{W(s+mp)W(s+q)}$$

is the Tate pairing. For $P, Q \in E(K)[m]$, the more well-known Weil pairing:

$$e_m(P,Q) = \frac{\tau_m(P,Q)}{\tau_m(Q,P)}$$

▲ロト ▲冊 ▶ ▲ヨト ▲ヨト 三回 のへの

Discrete Log (joint with Kristin Lauter)

Problem (Elliptic Curve Discrete Logarithm Problem)

Let E be an elliptic curve over a finite field $K = \mathbb{F}_q$. Suppose one is given points $P, Q \in E(K)$ such that $Q \in \langle P \rangle$. Determine k such that Q = [k]P.

Problem (Width s EDS Discrete Log)

Given an elliptic divisibility sequence W and terms W(k), W(k+1), ..., W(k+s-1), determine k.

First posed by Rachel Shipsey:

- Reduced it to \mathbb{F}_q^* discrete logarithm problem.
- ► Used the solution to give an attack on ECDLP in case ord(P) = q - 1.

Perfect periodicity

$$E: y^2 + y = x^3 + x^2 - 2x, P = (0,0)$$
 over \mathbb{F}_5
 $W_{E,P}(n)$ is...

 $0, 1, 1, 2, 1, 3, 4, 3, 2, 0, 3, 2, 1, 2, 4, 3, 4, 4, 0, 1, 1, 1, 2, 1, 3, 4, \dots$

The sequence $\phi([n]P) = 3^{n^2} W_{E,P}(n)$ is

 $0, 3, 1, 1, 1, 4, 4, 4, 2, 0, 3, 1, 1, 1, 4, 4, 4, 2, 0, 3, 1, 1, 1, 4, 4, \ldots$

There is always some λ for which $\lambda^{n^2} W_{E,P}(n)$ has period equal to the order of P. We call this new sequence the *perfectly periodic* sequence. (Lauter, S.)

Hard problems for EDS

Let *E* be an elliptic curve over a finite field $K = \mathbb{F}_q$. Suppose one is given points $P, Q \in E(K)$ such that $Q \in \langle P \rangle$, $Q \neq O$, and $ord(P) \ge 4$.

Problem (EDS Association)

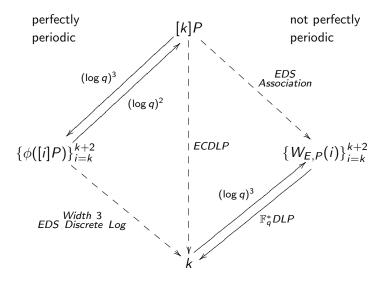
Determine $W_{E,P}(k)$ for the value of 0 < k < ord(P) such that Q = [k]P.

Problem (EDS Residue)

Determine the quadratic residuosity of $W_{E,P}(k)$ for the value of 0 < k < ord(P) such that Q = [k]P.

The smallest positive value of k such that [k]P = Q will be called the minimal multiplier.

Relating hard problems



Equivalence of problems

Theorem (Lauter, S.)

Let E be an elliptic curve over a finite field \mathbb{F}_q . If any one of the following problems is solvable in sub-exponential time, then all of them are:

- 1. ECDLP
- 2. EDS Association for non-perfectly periodic sequences
- 3. Width 3 EDS Discrete Log for perfectly periodic sequences

- If $|E(\mathbb{F}_q)|$ is odd and char $(\mathbb{F}_q) \neq 2$, we can also include
 - 4. EDS Residue for non-perfectly periodic sequences

Bibliography

M. Ward.

Memoir on Elliptic Divisibility Sequences.

American Journal of Mathematics, 70:13-74, 1948.

K. Stange.

Elliptic Nets and Elliptic Curves.

To appear, ANT.

K. Stange.

The Tate Pairing via Elliptic Nets. Pairing 2007.

🔋 K. Lauter, K. Stange.

The elliptic curve discrete logarithm problem and equivalent hard problems for elliptic divisibility sequences. SAC 2008.

(日)

Slides, Articles and Preprints at http://www.sfu.ca/~kestange/