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Consider a cubic curve of the form

E : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6
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If you intersect with any line, there are exactly 3 solutions:
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Actually, sometimes it looks like 2 solutions.

But in this case we imagine an extra “point at infinity”,∞, that
the line goes through.
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So if we start with two points on the curve. . .
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So if we start with two points on the curve, and draw a line
through them. . .
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So if we start with two points on the curve, and draw a line
through them to get another point. . .
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This is almost a group law. To make it work (all the axioms) we
actually have to add a reflection at the end:
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Group Law

And that’s how we get P + Q.
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Identity

Identity: ∞
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Inverses

Inverses: Two points on a line with∞.
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Associativity

Hard to check, but true!
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The points of the elliptic curve form a group!
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Z/pZ, the integers modulo p

. . . has addition

(3 mod 7) + (6 mod 7) = 2 mod 7

. . . has subtraction

(3 mod 7)− (6 mod 7) = 4 mod 7

. . . has multiplication

(2 mod 7)× (4 mod 7) = 1 mod 7

. . . has division

(1 mod 7)÷ (2 mod 7) = 1/2 mod 7 = 4 mod 7

In fact, it’s a field. We call it Fp, the finite field of p elements.
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y2 + y = x3 + x2 over F7
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y2 + y = x3 + x2 over F11
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y2 + y = x3 + x2 over F17
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y2 + y = x3 + x2 over F31
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y2 + y = x3 + x2 over F10501
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An elliptic curve E/Q gives rise to an elliptic curve E/Fp for
each p:

→
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y2 + y = x3 + x2

Also, given P ∈ E(Q), we get a list of orders modulo p:

prime 2 3 5 7 11 13 17 19 23 29 31
order of P 5 6 10 8 9 19 21 11 25 12 33

(This point P has infinite order in E(Q).)
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Elliptic Divisibility Sequences

P = (0, 0) 1

2P = (−1,−1) 1

3P = (1,−2) 1

4P = (2, 3) −1

5P =

(
−

3,

22
,

1

23

)
−2

6p =

(
−

2

32
,−

28

33

)
−3

7P = (21,−99) −1

8P =

( 11

72
,

20

73

)
7

9P =

(
−

140

112
,−

931

113

)
11

10P =

( 209

202
,−

10527

203

)
20
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Definition
An elliptic divisibility sequence (EDS) is an integer sequence
Wn satisfying

Wn+mWn−mW 2
r + Wm+r Wm−r W 2

n + Wr+nWr−nW 2
m = 0.

On any elliptic curve, we can define An,Bn,Wn recursively so
that

nP =

(
An

W 2
n
,

Bn

W 3
n

)
,

and Wn is an EDS.

Wn = 0 ⇐⇒ nP =∞
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Reducing an EDS modulo p

EDS from P = (0,0) on y2 + y = x3 + x2

1,1,1,−1,−2,−3,−1,7,11,20,−19,−87,−191,−197,1018

EDS from P = (0,0) on y2 + y = x3 + x2 modulo 7:

1,1,1,6,5,4,6,0,4,6,2,4,5,6,3



Elliptic curve review ECs over Finite Fields Index divisibility Amicable pairs and aliquot cycles

Let’s put together some of the data:

prime 2 3 5 7 11 13 17 19 23 29 31
order of P 5 6 10 8 9 19 21 11 25 12 33
W0 0 0 0 0 0 0 0 0 0 0 0
W1 1 1 1 1 1 1 1 1 1 1 1
W2 1 1 1 1 1 1 1 1 1 1 1
W3 1 1 1 1 1 1 1 1 1 1 1
W4 1 2 4 6 10 12 16 18 22 28 30
W5 0 1 3 5 9 11 15 17 21 27 29
W6 1 0 2 4 8 10 14 16 20 26 28
W7 1 2 4 6 10 12 16 18 22 28 30
W8 1 1 2 0 7 7 7 7 7 7 7
W9 1 2 1 4 0 11 11 11 11 11 11
W10 0 2 0 6 9 7 3 1 20 20 20
W11 1 2 1 2 3 7 15 0 4 10 12
W12 1 0 3 4 1 4 15 8 5 0 6
W13 1 1 4 5 7 4 13 18 16 12 26
W14 1 1 3 6 1 11 7 12 10 6 20
W15 0 1 3 3 6 4 15 11 6 3 26
W16 1 2 1 0 8 3 12 2 13 13 15
W17 1 1 1 1 7 1 14 2 3 13 7
W18 1 0 4 4 0 9 7 11 1 17 18
W19 1 2 1 2 1 0 5 12 16 27 24
W20 0 1 0 6 5 12 6 18 16 7 2
W21 1 2 4 6 3 4 0 8 12 20 7
W22 1 2 1 1 7 10 7 0 5 5 16
W23 1 2 4 6 4 1 5 1 19 23 29
W24 1 0 4 0 8 5 6 11 17 0 20
W25 0 1 2 1 6 9 3 7 0 4 23
W26 1 1 2 6 10 1 14 18 2 1 7
W27 1 1 1 1 0 2 15 16 3 22 24
W28 1 2 2 1 4 6 6 17 16 9 5
W29 1 1 4 5 3 6 4 18 22 19 25
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When we reduce mod 7, where does

8P =

(
11
49

,
20

343

)
go?

To∞! The identity.

So 8P̃ =∞ modulo 7.

In the associated EDS, 7 |W8.

The primes appear in the EDS at the multiples of the order of P.
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n Wn factorisation
1 1 1
2 1 1
3 1 1
4 −1 −1
5 −2 −1 · 2
6 −3 −1 · 3
7 −1 −1
8 7 7
9 11 11
10 20 22 · 5
11 −19 −1 · 19
12 −87 −1 · 3 · 29
13 −191 −1 · 191
14 −197 −1 · 197
15 1018 2 · 509
16 2681 7 · 383
17 8191 8191
18 −5841 −1 · 32 · 11 · 59
19 −81289 −1 · 133 · 37

n Wn factorisation
20 −261080 −1 · 23 · 5 · 61 · 107
21 −620551 −1 · 17 · 173 · 211
22 3033521 19 · 43 · 47 · 79
23 14480129 1447 · 10007
24 69664119 3 · 7 · 29 · 73 · 1567
25 −2664458 −1 · 2 · 23 · 57923
26 −1612539083 −1 · 191 · 1439 · 5867
27 −7758440129 −1 · 11 · 827 · 852857
28 −37029252553 −1 · 197 · 187965749
29 181003520899 3323 · 6521 · 8353
30 1721180313660 22 · 3 · 5 · 509 · 647 · 87107
31 12437589708389 12437589708389
32 19206818781913 7 · 383 · 7164050273
33 −672004824959359 −1 · 19 · 31 · 1699 · 671527369
34 −5070370671429517 −1 · 8191 · 619017295987
35 −44138469613743118 −1 · 2 · 71 · 32401 · 39563 · 242483
36 205791799565838321 32 · 11 · 29 · 59 · 1214906514389
37 4451821019236847359 41 · 1237 · 29443 · 2981275289
38 47106384726033313759 133 · 37 · 233 · 354643 · 7012949

If p |Wn and n | m, then p |Wm.
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n Ln factorisation
1 1 1
2 3 3
3 8 23

4 21 3 · 7
5 55 5 · 11
6 144 24 · 32

7 377 13 · 29
8 987 3 · 7 · 47
9 2584 23 · 17 · 19
10 6765 3 · 5 · 11 · 41
11 17711 89 · 199
12 46368 25 · 32 · 7 · 23
13 121393 233 · 521
14 317811 3 · 13 · 29 · 281
15 832040 23 · 5 · 11 · 31 · 61
16 2178309 3 · 7 · 47 · 2207
17 5702887 1597 · 3571
18 14930352 24 · 33 · 17 · 19 · 107
19 39088169 37 · 113 · 9349
20 102334155 3 · 5 · 7 · 11 · 41 · 2161

n Ln factorisation
21 267914296 23 · 13 · 29 · 211 · 421
22 701408733 3 · 43 · 89 · 199 · 307
23 1836311903 139 · 461 · 28657
24 4807526976 26 · 32 · 7 · 23 · 47 · 1103
25 12586269025 52 · 11 · 101 · 151 · 3001
26 32951280099 3 · 233 · 521 · 90481
27 86267571272 23 · 17 · 19 · 53 · 109 · 5779
28 225851433717 3 · 72 · 13 · 29 · 281 · 14503
29 591286729879 59 · 19489 · 514229
30 1548008755920 24 · 32 · 5 · 11 · 31 · 41 · 61 · 2521
31 4052739537881 557 · 2417 · 3010349
32 10610209857723 3 · 7 · 47 · 1087 · 2207 · 4481
33 27777890035288 23 · 89 · 199 · 9901 · 19801
34 72723460248141 3 · 67 · 1597 · 3571 · 63443
35 190392490709135 5 · 11 · 13 · 29 · 71 · 911 · 141961
36 498454011879264 25 · 33 · 7 · 17 · 19 · 23 · 107 · 103681
37 1304969544928657 73 · 149 · 2221 · 54018521
38 3416454622906707 3 · 37 · 113 · 9349 · 29134601
39 8944394323791464 23 · 79 · 233 · 521 · 859 · 135721

If p | Ln and n | m, then p | Lm.
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E(Fp) - group of points over Fp

For each x0 ∈ Fp (there are p of them), the quadratic equation
in y

y2 + a1x0y + a3y = x3
0 + a2x2

0 + a4x0 + a6

has either 0 or 2 solutions. So either

no points or 2 points: (x0, y1) and (x0, y2).

So, if we assume that half the time it has solutions, then we get
about p points.

Oh, and there’s the point∞. So that makes about

p + 1 points
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Given E/Q, we get a list of group-orders #E(Fp):

y2 + y = x3 + x2

p 2 3 5 7 11 13 17 19 23 29 31 37
#E(Fp) 5 6 10 8 9 19 21 22 25 36 33 38
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Theorem (Hasse (1933))

|#E(Fp)− p − 1| < 2
√

p

We write ap = p + 1−#E(Fp).

p #E(Fp) ap b2√pc
2 5 -2 2
3 6 -2 3
5 10 -4 4
7 8 0 5
11 9 3 6
13 19 -5 7
17 21 -3 8
19 22 -2 8
23 25 -1 9
29 36 -6 10
31 33 -1 11
37 38 0 12

p #E(Fp) ap b2√pc
41 37 5 12
47 44 4 13
53 59 -5 14
59 72 -12 15
61 60 2 15
67 71 -3 16
71 70 2 16
73 72 2 17
79 88 -8 17
83 69 15 18
89 94 -4 18
97 91 7 19
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Theorem (Hasse (1933))

|#E(Fp)− p − 1| < 2
√

p

We write ap = p + 1−#E(Fp).
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Theorem (Deuring, 1941)
For any n such that |n− p− 1| < 2

√
p, there exists some elliptic

curve E over Fp such that

#E(Fp) = n
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Theorem (Cassells, 1966)
The group E(Fp) is of the form

Z/m1Z× Z/m2Z

where m1 | m2 and m1 | p − 1.
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Index divisibility

Joseph H. Silverman and I saw a paper of Chris Smyth, in
which he asked, for Lucas sequences Ln:

When does n | Ln?

So we wondered the same thing for Wn an elliptic divisibility
sequence:

When does n |Wn?
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When does n |Wn?

Does it happen for n = p?

If P has order p modulo p, then p |Wp.

This can happen if #E(Fp) = p. Such a curve is called
anomalous and is unsafe for cryptography because it has
special structure.
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Can we generalise this? What about if n = pq?

If p |Wq and q |Wp, then p |Wpq and q |Wpq. So pq |Wpq.

This happens if P has order p modulo q and order q modulo p.

Definition
Let E be an elliptic curve defined over Q. A pair (p,q) of primes
is called an amicable pair for E if

#E(Fp) = q, and #E(Fq) = p.

Question
(How often) does this happen?
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Amicable Pairs
Definition
Let E be an elliptic curve defined over Q. A pair (p,q) of primes
is called an amicable pair for E if

#E(Fp) = q, and #E(Fq) = p.

Example
y2 + y = x3 − x has one amicable pair with p,q < 107:

(1622311,1622471)

y2 + y = x3 + x2 has four amicable pairs with p,q < 107:

(853,883), (77761,77999),
(1147339,1148359), (1447429,1447561).
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Amicable Pairs
Definition
Let E be an elliptic curve defined over Q. A pair (p,q) of primes
is called an amicable pair for E if

#E(Fp) = q, and #E(Fq) = p.

Example
y2 + y = x3 − x has one amicable pair with p,q < 107:

(1622311,1622471)

y2 + y = x3 + x2 has four amicable pairs with p,q < 107:

(853,883), (77761,77999),
(1147339,1148359), (1447429,1447561).



Elliptic curve review ECs over Finite Fields Index divisibility Amicable pairs and aliquot cycles

Question
Let

QE(X ) = #
{

amicable pairs (p,q) such that p,q < X
}

How does QE(X ) grow with X?
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Heuristic

Prob(p is part of an amicable pair)

= Prob
(

q def
= #E(Fp) is prime and #E(Fq) = p

)
= Prob(q def

= #E(Fp) is prime)Prob(#E(Fq) = p).

A conjecture of Koblitz says that

Prob(#E(Fp) is prime) ≈ 1
log p

,

A conjecture of Sato and Tate says that

Prob(#E(Fq) = p) ≈ 1
√

q
≈ 1
√

p
.

Together:

Prob(p is part of an amicable pair) ≈ 1
√

p(log p)
.
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.
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Heuristic

QE(X ) ≈
∑
p≤X

Prob(p is the smaller prime in an amicable pair )

≈
∑
p≤X

1
√

p(log p)
.

Use the rough approximation

∑
p≤X

f (X ) ≈
∑

n≤X/ log X

f (n log n) ≈
∫ X/ log X

f (t log t)dt ≈
∫ X

f (u)
du

log u

to obtain

QE(X ) ≈
∫ X 1√

u log u
· du

log u
≈

√
X

(log X )2 .
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Conjecture (Version 1)
Let E/Q be an elliptic curve, let

QE(X ) = #
{

amicable pairs (p,q) such that p,q < X
}

Assume infinitely many primes p such that #E(Fp) is prime.

Then
QE(X ) ≈

√
X

(log X )2 as X →∞,
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Conjecture (Version 1)
Let E/Q be an elliptic curve, let

QE(X ) = #
{

amicable pairs (p,q) such that p,q < X
}

Assume infinitely many primes p such that #E(Fp) is prime.

Then
QE(X ) ≈

√
X

(log X )2 as X →∞,
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Data agreement...?

X Q(X ) Q(X )
/ √

X
(log X)2

log Q(X)
log X

106 2 0.382 0.050
107 4 0.329 0.086
108 5 0.170 0.087
109 10 0.136 0.111
1010 21 0.111 0.132
1011 59 0.120 0.161
1012 117 0.089 0.172

Table: Counting amicable pairs for y2 + y = x3 + x2 (thanks to
Andrew Sutherland with smalljac)
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Aliquot cycles

Definition
Let E be an elliptic curve. An aliquot cycle of length ` for E is a
sequence of distinct primes (p1,p2, . . . ,p`) such that

#E(Fp1) = p2, #E(Fp2) = p3, . . .

#E(Fp`−1) = p`, #E(Fp`
) = p1.

Example
y2 = x3 − 25x − 8 : (83,79,73)

E : y2 = x3 + 176209333661915432764478x+
60625229794681596832262 :

(23,31,41,47,59,67,73,79,71,61,53,43,37,29)
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Aliquot cycles

Definition
Let E be an elliptic curve. An aliquot cycle of length ` for E is a
sequence of distinct primes (p1,p2, . . . ,p`) such that

#E(Fp1) = p2, #E(Fp2) = p3, . . .

#E(Fp`−1) = p`, #E(Fp`
) = p1.

Example
y2 = x3 − 25x − 8 : (83,79,73)

E : y2 = x3 + 176209333661915432764478x+
60625229794681596832262 :

(23,31,41,47,59,67,73,79,71,61,53,43,37,29)
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Chinese Remainder Theorem

If you have a bunch of congruence conditions for distinct
primes:

x ≡ b1 mod p1

x ≡ b2 mod p2

...
x ≡ bn mod pn

Then there is a solution x ∈ Z.
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Constructing aliquot cycles with CRT
Fix ` and let p1,p2, . . . ,p` be a sequence of primes such that

|pi + 1− pi+1| ≤ 2
√

pi for all 1 ≤ i ≤ `,

where by convention we set p`+1 = p1.

For each pi find (by
Deuring) an elliptic curve Ei over Fpi satisfying

#Ei(Fpi ) = pi+1.

Use the Chinese remainder theorem on the coefficients of the
Weierstrass equations for E1, . . . ,E` to find an elliptic curve E
over Q satisfying

E mod pi
∼= Ei for all 1 ≤ i ≤ `.

Then by construction, the sequence (p1, . . . ,p`) is an aliquot
cycle of length ` for E .
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Constructing aliquot cycles with CRT
Fix ` and let p1,p2, . . . ,p` be a sequence of primes such that

|pi + 1− pi+1| ≤ 2
√

pi for all 1 ≤ i ≤ `,

where by convention we set p`+1 = p1. For each pi find (by
Deuring) an elliptic curve Ei over Fpi satisfying

#Ei(Fpi ) = pi+1.

Use the Chinese remainder theorem on the coefficients of the
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over Q satisfying

E mod pi
∼= Ei for all 1 ≤ i ≤ `.

Then by construction, the sequence (p1, . . . ,p`) is an aliquot
cycle of length ` for E .



Elliptic curve review ECs over Finite Fields Index divisibility Amicable pairs and aliquot cycles

Another example

y2 + y = x3 − x has one amicable pair with p,q < 107:

(1622311,1622471)

y2 + y = x3 + x2 has four amicable pairs with p,q < 107:

(853,883), (77761,77999),
(1147339,1148359), (1447429,1447561).

y2 = x3 + 2 has 5578 amicable pairs with p,q < 107:

(13,19), (139,163), (541,571), (613,661), (757,787), . . . .
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Another example

y2 + y = x3 − x has one amicable pair with p,q < 107:

(1622311,1622471)

y2 + y = x3 + x2 has four amicable pairs with p,q < 107:

(853,883), (77761,77999),
(1147339,1148359), (1447429,1447561).

y2 = x3 + 2 has 5578 amicable pairs with p,q < 107:

(13,19), (139,163), (541,571), (613,661), (757,787), . . . .
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CM case

Theorem
Let E/Q be an elliptic curve with complex multiplication, with
jE 6= 0. Suppose that p and q are primes of good reduction
for E with p ≥ 5 and q = #E(Fp).

Then either

#E(Fq) = p or #E(Fq) = 2q + 2− p.
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Pairs on CM curves
(D, f ) (3,3) (11,1) (19,1) (43,1) (67,1) (163,1)

X = 104 18 8 17 42 48 66

X = 105 124 48 103 205 245 395

X = 106 804 303 709 1330 1671 2709

X = 107 5581 2267 5026 9353 12190 19691

Table: QE(X ) for elliptic curves with CM

(D, f ) (3,3) (11,1) (19,1) (43,1) (67,1) (163,1)

X = 104 0.217 0.250 0.233 0.300 0.247 0.237

X = 105 0.251 0.238 0.248 0.260 0.238 0.246

X = 106 0.250 0.247 0.253 0.255 0.245 0.247

X = 107 0.249 0.251 0.250 0.251 0.250 0.252

Table: QE(X )/NE(X ) for elliptic curves with CM
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Conjecture (Version 2)
Let E/Q be an elliptic curve, let

QE(X ) = #
{

amicable pairs (p,q) such that p,q < X
}

Assume infinitely many primes p such that #E(Fp) is prime.

(a) If E does not have complex multiplication, then

QE(X ) ≈
√

X
(log X )2 as X →∞,

(b) If E has complex multiplication, then

QE(X ) ≈ X
(log X )2 as X →∞.
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No longer aliquot cycles in CM case

Theorem
A CM elliptic curve E/Q with j(E) 6= 0 has no aliquot cycles of
length ` ≥ 3 consisting of primes p ≥ 5.
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No longer aliquot cycles – proof

Let (p1,p2, . . . ,p`) be an aliquot cycle of length ` ≥ 3, with
pi ≥ 3. We must have

pi = 2pi−1 + 2− pi−2 for 3 ≤ i ≤ `,

p1 = 2p` + 2− p`−1.

Determining the general term for the recursion, we get

p`+1 = `p2 − (`− 1)p1 + `(`− 1).

p1 = p`+1 =⇒ p1 = p2 + `− 1.

Cyclically permuting the cycle gives

pi = pi+1 + `− 1 for all 1 ≤ i ≤ `,

where we set p`+1 = p1. So pi > pi+1 for all 1 ≤ i ≤ ` and
p` > p1. Contradiction!
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