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Remember those rabbits?

Ln = Ln−1 + Ln−2

1,1,2,3,5,8,13,21,34,55,89,144, . . .

More generally, for any p and q we get a Lucas sequence

Ln = pLn−1 + qLn−2, L1 = 1, L2 = p

Example (p = 3, q = −1)
The Evenacci numbers (every second Fibonacci).

1,3,8,21,55,144,377,987,2584, . . .
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The equation x2 − px − q = 0 has two roots, α, α. If we write

Ln =
αn − αn

α− α

we can check (just by algebra) that

Ln = pLn−1 + qLn−2, L1 = 1, L2 = p

Example
Fibonaccis: the roots of x2 − x − 1 = 0 are

α, α =
1±
√

5
2

Evenaccis: the roots of x2 − 3x + 1 = 0 are

α, α =
3±
√

5
2
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These numbers live in the number field Q(
√

d) (e.g. d = 5).
They look like

α = a + b
√

d

They have a norm

N(α) = αα = (a + b
√

d)(a− b
√

d) = a2 − db2

Amazingly (just check the algebra!):

N(αβ) = N(α)N(β)

The norm is multiplicative. Note that N(α) is the constant
coefficient of x2 − px − q, i.e. N(α) = −q.
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Forget sequences for a minute; let’s consider the hyperbola

x2 − 5y2 = 1

The rational points (x , y) on the curve are exactly norm 1
elements

x2 − dy2 = 1 is {(x , y) : N(x + y
√

d) = 1}
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The set
{(x , y) : N(x + y

√
d) = 1}

is a group, i.e. it has an operation (multiplication) – two points
can be combined to get another in this same set.

Group axioms
• there’s an identity: 1× P = P × 1 = P for any P.
• there are inverses: for each P, there’s a Q so P ×Q = 1.
• it’s associative: (P1 × P2)× P3 = P1 × (P2 × P3).
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This means x2 − dy2 = 1 should be a group!



From Fibonacci to Hyperbolas Elliptic Curves Elliptic Divisibility Sequences

This means x2 − dy2 = 1 should be a group!



From Fibonacci to Hyperbolas Elliptic Curves Elliptic Divisibility Sequences

This means x2 − dy2 = 1 should be a group!



From Fibonacci to Hyperbolas Elliptic Curves Elliptic Divisibility Sequences

This means x2 − dy2 = 1 should be a group!



From Fibonacci to Hyperbolas Elliptic Curves Elliptic Divisibility Sequences

This means x2 − dy2 = 1 should be a group!



From Fibonacci to Hyperbolas Elliptic Curves Elliptic Divisibility Sequences

This means x2 − dy2 = 1 should be a group!
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The projection of (x , y) to x-axis:

x =

(
(x + y

√
d) + (x − y

√
d)

)
2

=
(α+ α)

2

The projection of (x , y) to y -axis:

y =

(
(x + y

√
d)− (x − y

√
d)

)
2
√

d
=

(α− α)
2
√

d
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P, P2, P3, P4, P5, . . .

P =

(
3
2
,
1
2

)
,

P2 =

(
7
2
,
3
2

)
,

P3 =

(
18
2
,
8
2

)
,

P4 =

(
47
2
,
21
2

)
,

P5 =

(
123

2
,
55
2

)
.

y(αn) =
(αn − αn)

2
√

d
, Ln =

αn − αn

α− α
=

y(αn)

y(α)
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Consider instead a cubic curve

E : y2 + y = x3 + x2
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Because it is cubic, if you intersect E with any line
Rx + Sy = T , you get exactly 3 solutions:(

T − Rx
S

)2

+

(
T − Rx

S

)
= x3 + x2
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Occasionally, this cubic will have a double root, but that’s okay,
we just count that one twice.
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Well, actually, if S = 0 you have to do it this way:

y2 + y = (T/R)3 + (T/R)2

and it looks like 2 solutions.

But in this case we imagine an extra “point at infinity”,∞. Any
vertical line goes through two points on the curve and∞.
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So if we start with two points on the curve. . .
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So if we start with two points on the curve, and draw a line
through them. . .
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So if we start with two points on the curve, and draw a line
through them to get another point. . .
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This is almost a group law. To make it work (all the axioms) we
actually have to add a reflection at the end:
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Group Law

And that’s how we get P + Q.
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Identity
Identity: ∞

A line through P and∞ is vertical: the other intersection is the
reflection through x-axis.
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Inverses

Inverses: A vertical line.

Two points which add to∞.
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Associativity

Hard to check, but true!
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The points of y2 + y = x3 + x2 form a group!

This works for any y2 + a1xy + a3y = x3 + a2x2 + a4x + a6.
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E(Q) - the Mordell-Weil group of rational points of E
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E(Q) - the Mordell-Weil group of rational points of E

Theorem (Mordell, 1922)
E(Q) is finitely generated and abelian, i.e. P + Q = Q + P.

An abelian group looks like

Zr × Z/m1Z× Z/m2Z× · · · × Z/mnZ

r - rank
Zr - free part
Z/m1Z× Z/m2Z× · · · × Z/mnZ - torsion part

Theorem (Mazur, 1977)
The torsion part of the Mordell-Weil group is one of:

Z/NZ,1 ≤ N ≤ 10,N = 12 or Z/2Z× Z/2NZ,1 ≤ N ≤ 4.
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Genus - Number of holes

• topologically a sphere - no holes:
• e.g. hyperbola
• infinitely many rational points

• topologically a doughnut - one hole:
• e.g. elliptic curve
• finitely many or infinitely many rational points

• topologically many holes:
• finitely many rational points



From Fibonacci to Hyperbolas Elliptic Curves Elliptic Divisibility Sequences

Possible Ranks?
Rank ≥ Year Discoverer(s)
3 1945 Billing
4 1945 Wiman
6 1974 Penney & Pomerance
7 1975 Penney & Pomerance
8 1977 Grunewald & Zimmert
9 1977 Brumer & Kramer
12 1982 Mestre
14 1986 Mestre
15 1992 Mestre
17 1992 Nagao
19 1992 Fermigier
20 1993 Nagao
21 1994 Nagao & Kouya
22 1997 Fermigier
23 1998 Martin & McMillen
24 2000 Martin & McMillen
28 2008 Elkies
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y2 + xy + y = x3 − x2 − 20067762415575526585033208209338542750930230312178956502x +
34481611795030556467032985690390720374855944359319180361266008296291939448732243429

P1 = [−2124150091254381073292137463, 259854492051899599030515511070780628911531]

P2 = [2334509866034701756884754537, 18872004195494469180868316552803627931531]

P3 = [−1671736054062369063879038663, 251709377261144287808506947241319126049131]

P4 = [2139130260139156666492982137, 36639509171439729202421459692941297527531]

P5 = [1534706764467120723885477337, 85429585346017694289021032862781072799531]

P6 = [−2731079487875677033341575063, 262521815484332191641284072623902143387531]

P7 = [2775726266844571649705458537, 12845755474014060248869487699082640369931]

P8 = [1494385729327188957541833817, 88486605527733405986116494514049233411451]

P9 = [1868438228620887358509065257, 59237403214437708712725140393059358589131]

P10 = [2008945108825743774866542537, 47690677880125552882151750781541424711531]

P11 = [2348360540918025169651632937, 17492930006200557857340332476448804363531]

P12 = [−1472084007090481174470008663, 246643450653503714199947441549759798469131]

P13 = [2924128607708061213363288937, 28350264431488878501488356474767375899531]

P14 = [5374993891066061893293934537, 286188908427263386451175031916479893731531]

P15 = [1709690768233354523334008557, 71898834974686089466159700529215980921631]

P16 = [2450954011353593144072595187, 4445228173532634357049262550610714736531]

P17 = [2969254709273559167464674937, 32766893075366270801333682543160469687531]

P18 = [2711914934941692601332882937, 2068436612778381698650413981506590613531]

P19 = [20078586077996854528778328937, 2779608541137806604656051725624624030091531]

P20 = [2158082450240734774317810697, 34994373401964026809969662241800901254731]

P21 = [2004645458247059022403224937, 48049329780704645522439866999888475467531]

P22 = [2975749450947996264947091337, 33398989826075322320208934410104857869131]

P23 = [−2102490467686285150147347863, 259576391459875789571677393171687203227531]

P24 = [311583179915063034902194537, 168104385229980603540109472915660153473931]

P25 = [2773931008341865231443771817, 12632162834649921002414116273769275813451]

P26 = [2156581188143768409363461387, 35125092964022908897004150516375178087331]

P27 = [3866330499872412508815659137, 121197755655944226293036926715025847322531]

P28 = [2230868289773576023778678737, 28558760030597485663387020600768640028531]
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y2 + y = x3 + x2, P = (0,0)
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Do we get a sequence from this?

P = (0, 0)

2P = (−1,−1)

3P = (1,−2)

4P = (2, 3)

5P = (−3/4, 1/8)

6p = (−2/9,−28/27)

7P = (21,−99)

8P = (11/49, 20/343)

9P = (−140/121,−931/1331)

10P = (209/400,−10527/8000)
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In the hyperbola case, the function

y(P)

has as zeroes ±1. It grows as the power of P grows.
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Do we get a sequence from this?

P = (0, 0)

2P = (−1,−1)

3P = (1,−2)

4P = (2, 3)

5P = (−3/4, 1/8)

6p = (−2/9,−28/27)

7P = (21,−99)

8P = (11/49, 20/343)

9P = (−140/121,−931/1331)

10P = (209/400,−10527/8000)
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It turns out the right thing to do is to pull out the denominators

P = (0, 0) 1

2P = (−1,−1) 1

3P = (1,−2) 1

4P = (2, 3) −1

5P =

(
−

3,

22
,

1

23

)
−2

6p =

(
−

2

32
,−

28

33

)
−3

7P = (21,−99) −1

8P =

( 11

72
,

20

73

)
7

9P =

(
−

140

112
,−

931

113

)
11

10P =

( 209

202
,−

10527

203

)
20

(I’m sweeping the minus signs under the rug here. . . )
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1,1,1,−1,−2,−3,−1,7,11,20,−19,−87,−191,−197,1018

. . . is an example of . . .

Definition
An elliptic divisibility sequence is an integer sequence Wn
satisfying

Wn+mWn−mW 2
r + Wm+r Wm−r W 2

n + Wr+nWr−nW 2
m = 0.

Properties:
• can generate it from the first four terms
• satisfies n | m =⇒ Wn |Wm (we’ll see why!)
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E : y2+a1xy +a3y = x3+a2x2+a4x +a6, P = (x , y)

b2 = a2
1 + 4a4, b4 = 2a4 + a1a3, b6 = a2

3 + 4a6,

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a2

3 − a2
4,

W0 = 0, W1 = 1, W2 = 2y + a1y + a3,

W3 = 3x4 + b2x3 + 3b4x2 + 3b6x + b8,

W4 = W2(2x6 + b2x5 + 5b4x4 + 10b6x3 + 10b8x2 + (b2b8 − b4b6)x + (b4b8 − b2
6))

W2n+1 = Wn+2W 3
n − Wn−1W 3

n+1, n ≥ 2,

W2W2n = W 2
n−1WnWn+1 − Wn−2WnW 2

n+1, n ≥ 3,

An = xW 2
n − Wn−1Wn+1

4yBn = W 2
n−1Wn+2 + Wn−2W 2

n+1

Then

nP =

(
An

W 2
n
,

Bn

W 3
n

)
,

Wn+mWn−mW 2
r + Wm+r Wm−r W 2

n + Wr+nWr−nW 2
m = 0.
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E : y2+a1xy +a3y = x3+a2x2+a4x +a6, P = (x , y)

nP =

(
An

W 2
n
,

Bn

W 3
n

)
,

Wn+mWn−mW 2
r + Wm+r Wm−r W 2

n + Wr+nWr−nW 2
m = 0.

Wn = 0 ⇐⇒ nP = 0



From Fibonacci to Hyperbolas Elliptic Curves Elliptic Divisibility Sequences

Theorem (Ward, 1948)
Every elliptic divisibility sequence arises this way (as on the
previous slide).
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1,3,8,21,55,144,377,987,2584,6765, . . .

satisfies

Wn+mWn−mW 2
r + Wm+r Wm−r W 2

n + Wr+nWr−nW 2
m = 0.
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Example

y2 + 3xy + 3y = x3 + 2x2 + x

P = (0,0) ,

2P =

(
− 8

32 ,−
1
33

)
,

3P =

(
−63

82 ,−
3
83

)
,

4P =

(
−440

212 ,−
8

213

)
,

1,3,8,21,55,144,377,987,2584,6765, . . .

This is not really an elliptic curve, because it has a singularity.
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1,2,3,4,5,6,7,8,9,10, . . .

satisfies

Wn+mWn−mW 2
r + Wm+r Wm−r W 2

n + Wr+nWr−nW 2
m = 0.
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Example

y2 + 2xy + 2y = x3 + 2x2 + x

P = (0,0) ,

2P =

(
− 3

22 ,−
1
23

)
,

3P =

(
− 8

32 ,−
2
33

)
,

4P =

(
−15

42 ,−
3
43

)
,

1,2,3,4,5,6,7,8,9,10, . . .

This is not really an elliptic curve, because it has a singularity.
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