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Integral points on elliptic curves

Theorem (Siegel)
Any elliptic curve E/Q has only finitely many integral points.

Restrict to a cyclic subgroup of E(Q), say 〈P〉. There are only
finitely many [n]P integral.

How many?

Hindry and Silverman: A uniform bound assuming abc or
Szpiro’s conjecture, or for integral j-invariant.

How big?

i.e. How big can n be such that [n]P is integral?



Lang’s Conjecture

Conjecture (Lang)
There is a uniform constant C such that for any elliptic curve
E/Q in minimal Weierstrass form, and point P ∈ E(Q) of infinite
order,

ĥ(P) > Ch(E)

The heights ĥ and h measure arithmetic complexity;

e.g. h(a/b) = log max{|a|, |b|}.
Specifically,

h(E) = max{h(j), log |∆E |,1} (complexity of E),

ĥ(P) =
1
2

lim
n→∞

h(x([2n]P))

4n (complexity of cyclic group 〈P〉).



How big can n be such that [n]P is integral?
Theorem (Ingram)
There is a uniform constant C such that for all minimal elliptic
curves E/Q, and non-torsion P ∈ E(Q), there is at most one
value of n > CM(P)16 such that [n]P is integral.

M(P) = lcm{order of P in E(Qp)/E0(Qp)}

Theorem (S.)
There are uniform constants C and C′ such that for all minimal
elliptic curves E/Q, and non-torsion P ∈ E(Q), there is at most
one value of

n > max

{
C

h(E)

ĥ(P)
log

(
h(E)

ĥ(P)

)
,C′

}
such that [n]P is integral.
In particular, if Lang’s conjecture holds, then we obtain a
uniform bound for all but one integral multiple.
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Hall-Lang Conjecture

Conjecture (Hall-Lang)
There is a uniform constant C such that for any elliptic curve
E/Q in minimal Weierstrass form and non-torsion integral
point P ∈ E(Q),

ĥ(P) < Ch(E).

Corollary (S.)
There are uniform constants C and N such that for any elliptic
curve E/Q in minimal Weierstrass form, and non-torsion
integral point P ∈ E(Q) having at least two integral multiples
[n]P, [m]P satisfying n > m > N, then

ĥ(P) < Ch(E).

Note: Not conditional on Lang’s conjecture.



Hall-Lang Conjecture
Another sense in which it is progress toward Hall-Lang
conjecture: if the bound could be improved from

n > max

{
C

h(E)

ĥ(P)
log

(
h(E)

ĥ(P)

)
,C′

}

to

n > max

C

(
h(E)

ĥ(P)

)1/2

,C′

 ,

then for all but one sufficiently large n where [n]P is integral,

ĥ([n]P) < C′′h(E)

In other words, all but one sufficiently large integral multiple of
P would satisfy a Hall-Lang bound.



The proof

Based on Ingram’s method (linear forms in elliptic logarithms),
but with a modification to a lemma on elliptic divisibility
sequences.



Elliptic divisibility sequences

E : y2 = x3 + Ax + B an elliptic curve, P a point on E .

Ψn – n-th division polynomial, vanishes at non-zero n-torsion

Ψ1 = 1, Ψ2 = 2y , Ψ3 = 3x4 + 6Ax2 + 12Bx − A2,

Ψ4 = 4y(x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4ABx − 8B2 − A3),

Ψn+mΨn−m = Ψn+1Ψn−1Ψ2
m −Ψm+1Ψm−1Ψ2

n. (1)

Ψn encode multiplication-by-n:

[n]P =

(
φn(P)

Ψ2
n(P)

,
ωn(P)

Ψ3
n(P)

)
.

The sequence Ψn(P) is an elliptic divisibility sequence.

Ward (1948): Anything satisfying (1) is Ψn(P) for some (E ,P).
(Possibly singular.)



Example: y2 + y = x3 + x2 − 2x ,P = (0,0)

W1 = 1

P = (0,0)

W2 = 1

[2]P = (3,5)

W3 = −3

[3]P =

(
−11

9
,
28
27

)

W4 = 11

[4]P =

(
114
121

,− 267
1331

)

W5 = 38

[5]P =

(
−2739

1444
,−77033

54872

)

W6 = 249

[6]P =

(
89566
62001

,−31944320
15438249

)

W7 = −2357

[7]P =

(
−2182983

5555449
,−20464084173

13094193293

)
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Example: y2 + y = x3 + x2 − 2x ,P = (0,0)

W1 = 1 P = (0,0)
W2 = 1 [2]P = (3,5)

W3 = −3 [3]P =

(
−11

32 ,
28
33

)
W4 = 11 [4]P =

(
114
112 ,−

267
113

)
W5 = 38 [5]P =

(
−2739

382 ,−77033
383

)
W6 = 249 [6]P =

(
89566
2492 ,−31944320

2493

)
W7 = −2357 [7]P =

(
−2182983

23572 ,−20464084173
23573

)



Not quite the denominator

Take P integral, E minimal. Recall:

[n]P =

(
φn(P)

Ψ2
n(P)

,
ωn(P)

Ψ3
n(P)

)
.

Then,
gcd(φn(P),Ψn(P))

is supported on bad primes (dividing ∆E ).



Primes appearing in elliptic divisibility sequences

For primes of good reduction,

p | Ψn(P) ⇐⇒ [n]P ≡ O (mod p)

Example

n 1 2 3 4 5 6 7 8
Ψn(P) 1 1 2 3 −5 −22 · 7 −67 −3 · 137

n 9 10 11 12
Ψn(P) −2 · 11 · 23 5 · 13 · 167 74231 23 · 32 · 7 · 1319



Primes appearing in elliptic divisibility sequences
Let p > 2 be a prime of good reduction for E .
Let vp be a discrete valuation associated to p.
Let N > 1 be the order of P modulo p.

vp(Ψn(P)) =

{
vp(ΨN(P)) + vp(n/N) N | n
0 N - n

Example
v3(Ψn(P)) for sequence 1,1,2,3, . . .

0, 0,0,1,0,0,0,1,0,0,0,2,0,0,0,1,0,0,0,1,0,0,0,2,
0, 0,0,1,0,0,0,1,0,0,0,3,0,0,0,1,0,0,0,1,0,0,0,2,
0, 0,0,1,0,0,0,1,0,0,0,2,0,0,0,1,0,0,0,1,0,0,0,3,
0, 0,0,1,0,0,0,1,0,0,0,2,0,0,0,1,0,0,0,1,0,0,0,2,
0, 0,0,1,0,0,0,1,0,0,0,4,0,0,0,1,0,0,0,1,0,0,0,2, . . .



The underlying reason is the formal group of E .

Let E0(Qp) be the points of non-singular reduction modulo p.

There’s a filtration of subgroups of E0(Qp):

E0(Qp) ⊃ E1(Qp) ⊃ E2(Qp) ⊃ . . .

where

Ek (Qp) = {P ∈ E0(Qp) : P ≡ O (mod pk )}.

The theory of formal groups says that for k ≥ 1,

Ek (Qp)

Ek+1(Qp)
∼=

Z
pZ

.



Valuations at bad primes

Example
1,3,2 · 3,32,33,22 · 34,36 · 5,37 · 13,2 · 310, . . .

has v3(Ψn(P)):

0,1,1,2,3,4,6,7,10,11,14,16,19,22,25,29,32,38,40,45,49,
54,59,64,70,75,82,87,94,100,107,114,121,129,136,146,
152,161,169,178,187,196,206,215,226,235,246,256,267, . . .

The associated curve E has split multiplicative reduction at 3.
The associated point P reduces to the node.



Valuations of EDS

Theorem (S.)
Let p 6= 2. Consider an elliptic curve E/Qp and P ∈ E(Qp) a
non-torsion point. Then there are integers

a, `, c1, c2, c3, c4, c5

such that

vp(Ψn(P)) =
1
c1

(
Rn(a, `) + c2n2 + c3 +

{
c4 + vp(n) c5 | n
0 c5 - n

)
.

where

Rn(a, `) =

⌊
n2â(`− â)

2`

⌋
−
⌊

n̂a(`− n̂a)

2`

⌋
.

where x̂ denotes the least non-negative residue of x modulo `.



Valuations of EDS

vp(Ψn(P)) =
1
c1

(
Rn(a, `) + c2n2 + c3 +

{
c4 + vp(n) c5 | n
0 c5 - n

)
.

` = v(∆E ) (for multiplicative reduction)
a is the image of P in E(Qp)/E0(Qp) ∼= Z/`Z (for
multiplicative reduction; a = 0 for potential good reduction)
c5 minimal so that [c5]P ≡ O mod p
c3, c2 - appear for non-minimal Weierstrass equations,
additive reduction, or if P ≡ O mod p.
c1 6= 1 only for additive reduction; relates to degree of field
extension needed to resolve additive reduction to either
good or multiplicative



The bad primes example

Example
1,3,2 · 3,32,33,22 · 34,36 · 5,37 · 13,2 · 310, . . .

has v3(Ψn(P)):

0,1,1,2,3,4,6,7,10,11,14,16,19,22,25,29,32,38,40,45,49,
54,59,64,70,75,82,87,94,100,107,114,121,129,136,146,
152,161,169,178,187,196,206,215,226,235,246,256,267, . . .

The associated curve E has split multiplicative reduction at 3.
The associated point P reduces to the node.

c1 = 1, c2 = −1, c3 = 1, c4 = −1, c5 = 18, a = 4, ` = 9.



General form for torsion points

Tate gives a normal form for a curve with an N-torsion point.

E.g. for N = 7:

y2 +(1−α2 +α)xy +(α2−α3)y = x3 +(α2−α3)x2, P = (0,0)

In this case the corresponding EDS is

Wn = ±αRn(2,7)(α− 1)Rn(1,7),



Lemma for Diophantine estimate

Recall that

[n]P =

(
φn(P)

Ψ2
n(P)

,
ωn(P)

Ψ3
n(P)

)
.

The gcd
gcd(Ψn(P), φn(P))

is supported on the bad primes.

Lemma (S.)
Let Dn ∈ Z be the denominator of [n]P ∈ E(Q). Then

log Dn ≤ log |Ψn(P)| ≤ log Dn +
n2

8
log |∆E |.


