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Integral points on elliptic curves

Theorem (Siegel)
Any elliptic curve E/Q has only finitely many integral points.

Restrict to a cyclic subgroup of E(Q), say (P). There are only
finitely many [n]P integral.

How many?

Hindry and Silverman: A uniform bound assuming abc or
Szpiro’s conjecture, or for integral j-invariant.

How big?

i.e. How big can n be such that [n]P is integral?



Lang’s Conjecture

Conjecture (Lang)

There is a uniform constant C such that for any elliptic curve
E/Q in minimal Weierstrass form, and point P € E(Q) of infinite
order, R

h(P) > Ch(E)

The heights h and h measure arithmetic complexity;

e.g. h(a/b) = logmax{|al, |b|}.
Specifically,

h(E) = max{h(j),log|Ag|,1} (complexity of E),
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(complexity of cyclic group (P)).



How big can n be such that [n]P is integral?
Theorem (Ingram)

There is a uniform constant C such that for all minimal elliptic
curves E/Q, and non-torsion P € E(Q), there is at most one
value of n > CM(P)'® such that [n]P is integral.

M(P) = lcm{order of P in E(Qp)/Eo(Qp)}



How big can n be such that [n]P is integral?
Theorem (Ingram)

There is a uniform constant C such that for all minimal elliptic
curves E/Q, and non-torsion P € E(Q), there is at most one
value of n > CM(P)'® such that [n]P is integral.

M(P) = lcm{order of P in E(Qp)/Eo(Qp)}

Theorem (S.)

There are uniform constants C and C' such that for all minimal
elliptic curves E /Q, and non-torsion P € E(Q), there is at most

one value of
n > max {CQ(E) log (ﬁ(E)> ,C’}
h(P) h(P)

such that [n]P is integral.

In particular, if Lang’s conjecture holds, then we obtain a
uniform bound for all but one integral multiple.




Hall-Lang Conjecture

Conjecture (Hall-Lang)
There is a uniform constant C such that for any elliptic curve
E/Q in minimal Weierstrass form and non-torsion integral
point P € E(Q),

h(P) < Ch(E).

Corollary (S.)

There are uniform constants C and N such that for any elliptic
curve E/Q in minimal Weierstrass form, and non-torsion
integral point P € E(Q) having at least two integral multiples
[n]P, [m]P satisfying n > m > N, then

h(P) < Ch(E).

Note: Not conditional on Lang’s conjecture.



Hall-Lang Conjecture

Another sense in which it is progress toward Hall-Lang
conjecture: if the bound could be improved from

n > max {CT(E) log <Q(E)> ,C’}
h(P) h(P)

b 1/2
n>max{C(A(E)> ,C’},
h(P)

then for all but one sufficiently large n where [n]P is integral,

to

h([n]P) < C"h(E)

In other words, all but one sufficiently large integral multiple of
P would satisfy a Hall-Lang bound.



The proof

Based on Ingram’s method (linear forms in elliptic logarithms),
but with a modification to a lemma on elliptic divisibility
sequences.



Elliptic divisibility sequences
E : y? = x3 + Ax + B an elliptic curve, P a pointon E.
V¥, — n-th division polynomial, vanishes at non-zero n-torsion
vy =1, v, =2y, Wy = 3x* + 6Ax% + 12Bx — A?,
Wy = 4y(x® + 5Ax* +20Bx® — 5A2x® — 4ABx — 8B% — A%),
VnemWpm = Vo Vo 1W2 — Vo W W2, (1)
¥, encode multiplication-by-n:

_ ([ 9¢n(P) wn(P)
P = (w%(P)’w%(P)>‘

The sequence V,(P) is an elliptic divisibility sequence.

Ward (1948): Anything satisfying (1) is W,(P) for some (E, P).
(Possibly singular.)



Example: y2 +y = x3 + x2 — 2x, P = (0,0)

W, =
W, =
Ws = -3
Wy = 11
Ws = 38
Wy = 249

W7 = —2357



Example: y2 +y = x3 + x2 — 2x, P = (0,0)

W, = P =(0,0)

W, = [2]P = (3,5)

Wos - (02

Wy = 11 [4]P = %,—%
Ws = 38 [5]P = —%,—%

89566 31944320

62001 15438249
2182983 204640841 73)

W =249  [6]P =

Wy = 2357 [7]P = 5555449’ 13094193293



Example: y2 +y = x3 + x2 — 2x, P = (0,0)

W = 1 P =(0,0)

W, = 1 [2]P = (3,5)

Wos - (2

Wy = 11 [4]P = %,—%
Ws = 38 [5]P = —%,—%

89566 31944320

62001’ 15438249
2182983 204640841 73)

W =249  [6]P =

Wy = — = (- -
7 = —2357 [7]P 5555449’ 13094193293



Example: y2 +y = x3 + x2 — 2x, P = (0,0)

Wy =1 P =(0,0)

We =1 2P = (3,5)

We=-3  [3]P= _;l’if

Wy = 11 [4]P = %7_%
Ws=38  [5]P= _237;5’_7;(;3
Ws =249  [6]P = 8;5526,_31223320

W; = —2357 [7]P =

2182983 20464084173
23572 23573



Not quite the denominator

Take P integral, E minimal. Recall:

_ d)n(P) Wn(P)
P = (w%(P)’w,%(P)>'

Then,
ged(¢n(P), Wn(P))

is supported on bad primes (dividing Ag).



Primes appearing in elliptic divisibility sequences

For primes of good reduction,

p|Vn(P) < [n]P=0 (mod p)

Example
n |1]2]3|4]5 |6 |7 |8
V,(Py[1]1]2]|3]-5]-22.7|-67|-3-137
n E | 10 (11 |12

Vn(P)| —2-11-235.13-167 | 74231 [ 2°.32.7-1319



Primes appearing in elliptic divisibility sequences

Let p > 2 be a prime of good reduction for E.
Let v, be a discrete valuation associated to p.
Let N > 1 be the order of P modulo p.

G RV

Example
v3(Wn(P)) for sequence 1,1,2,3,...

0,0,0,1,0,0,0,1,0,0,0,2,0,0,0,1,0,0,0,1,0,0,0,2,
0,0,0,1,0,0,0,1,0,0,0,8,0,0,0,1,0,0,0,1,0,0,0,2,
0,o0,0,1,0,0,0,1,0,0,0,2,0,0,0,1,0,0,0,1,0,0,0, 3,
o,0,0,1,0,0,0,1,0,0,0,2,0,0,0,1,0,0,0,1,0,0,0,2,
0,0,0,1,0,0,0,1,0,0,0,4,0,0,0,1,0,0,0,1,0,0,0,2,...



The underlying reason is the formal group of E.
Let Eo(Qp) be the points of non-singular reduction modulo p.
There’s a filtration of subgroups of Ey(Qp):
Eo(Qp) D E1(Qp) D E2(Qp) O - ..
where

Ek(Qp) ={P € Eo(Qp) : P=0 (mod p*)}.

The theory of formal groups says that for k > 1,

Ex(Qp) ~ L
Exi1(Qp)  pZ



Valuations at bad primes

Example
1,3,2.3,3%2,3%22.343%.537.13,2.3'0 ..
has v3(V,(P)):
0,1,1,2,3,4,6,7,10,11,14,16,19,22, 25, 29, 32, 38, 40, 45, 49,

54,59,64,70,75,82,87,94,100,107, 114,121,129, 136, 146,
152,161,169,178,187,196,206,215, 226, 235, 246, 256, 267, . ..

The associated curve E has split multiplicative reduction at 3.
The associated point P reduces to the node.



Valuations of EDS

Theorem (S.)

Let p # 2. Consider an elliptic curve E/Qp and P € E(Qp) a
non-torsion point. Then there are integers

a, Ea C1,C2,C3,C4,C5

such that
_ 1 > Ca+Vp(n) cs|n

where

)< | FHD)| ||

where X denotes the least non-negative residue of x modulo ¢.



Valuations of EDS

mwm»—;<mm@+q¥+%+{§+%W 2”).

¢ = v(Ag) (for multiplicative reduction)

ais the image of Pin E(Qp)/Eo(Qp) = Z/¢Z (for
multiplicative reduction; a = 0 for potential good reduction)
¢s minimal so that [cs]P = O mod p

c3, C» - appear for non-minimal Weierstrass equations,
additive reduction, or if P= 0O mod p.

¢y # 1 only for additive reduction; relates to degree of field
extension needed to resolve additive reduction to either
good or multiplicative



The bad primes example

Example
1,3,2.3,32,3%,22.34 36.5.37.13,2.3'% ...
has v3(V,(P)):
0,1,1,2,3,4,6,7,10,11,14,16,19, 22, 25,29, 32, 38, 40, 45, 49,

54,59,64,70,75,82,87,94,100,107,114,121,129, 136, 146,
152,161,169, 178,187,196, 206,215,226, 235, 246, 256, 267, . ..

The associated curve E has split multiplicative reduction at 3.
The associated point P reduces to the node.

cir=1,c=—-1,c=1,¢c4,=-1,¢c5=18, a=4, / =9.



General form for torsion points

Tate gives a normal form for a curve with an N-torsion point.

E.g.for N=7:

)

V2+(1—a?+a)xy+(a®—ad)y = x*+(a®-a®)x2, P =(0,0)
In this case the corresponding EDS is

Wy = +aPET) (o - 1)),



Lemma for Diophantine estimate

Recall that

_ ¢n(P) Wn(P)
P = (w%(P)’w%(P)>‘

The gcd
ged(Vn(P), ¢n(P))

is supported on the bad primes.

Lemma (S.)
Let D, € Z be the denominator of [n|P € E(Q). Then

2
log Dy < log [Wn(P)| < log Dy + % log | A



