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A Question

For any integer sequence (Dn)n≥1 we define the index
divisibility set of D to be

S(D) =
{

n ≥ 1 : n | Dn
}
.

Ex: S(D) for Dn = bn − b are pseudoprimes to the base b.
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Strong divisibility sequences

Definition
An integer sequence Dn,n ≥ 1 is a divisibility sequence if

n | m =⇒ Dn | Dm.

The sequence is a strong divisibility sequence if in addition

gcd(Dn,Dm) | Dgcd(n,m).

Example (Fibonacci numbers)
n 1 2 3 4 5 6 7 8 9 10 11 12 13
Fn 1 1 2 3 5 8 13 21 34 55 89 144 233

Example (An elliptic divisibility sequence)
n 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Fn 1 1 1 1 2 1 3 5 7 4 23 29 59 129
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Rank of apparition

Definition
The rank of apparition of an integer n ≥ 1 is

rn = min
k>0
{Dk ≡ 0 (mod n)}

• The sequence rn itself is a divisibility sequence:
n | m =⇒ rn | rm.

Example (Fibonacci numbers)
n 1 2 3 4 5 6 7 8 9 10 11 12 13
Fn 1 1 2 3 5 8 13 21 34 55 89 144 233

Ranks of apparition:
n 1 2 3 4 5 6 7 8 9 10 11 12 13
rn 1 3 4 6 5 12 8 6 12 15 10 12 7
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Index divisibility

Suppose n ∈ S(D), and p coprime to n satisfies rp = p. Then
np | Dnp.

So if n ∈ S(D), then np ∈ S(D).

Make S(D) a directed graph with arrows Arrow(D).
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Index divisibility graph for Fibonacci numbers
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n 1 2 3 4 5 6 7 8 9 10 11 12 13
Fn 1 1 2 3 5 8 13 21 34 55 89 144 233
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A Theorem of Smyth
Theorem (Smyth)
Let a,b ∈ Z, and let L = (Ln)n≥1 be the associated Lucas
sequence of the first kind, i.e.,

Ln+2 = aLn+1 − bLn, L0 = 0, L1 = 1.

Let δ = a2 − 4b and let n ∈ S(L) be a vertex. Then the arrows
originating at n are

{n→ np : p is prime and p | Lnδ} ∪ Ba,b,n,

where

Ba,b,n =


{n→ 6n} if (a,b) ≡ (3,±1) (mod 6), (6,Ln) = 1,
{n→ 12n} if (a,b) ≡ (±1,−1) (mod 6), (6,Ln) = 1,
∅ otherwise.
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A dynamical system

Let Dn be a divisibility sequence. Define φD : Z>0 → Z>0 be
defined by

φD(n) = rn.

Example
Let Fn be the Fibonacci numbers. Then φF (5) = 5 is the unique
fixed point of φF .
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Fibonacci numbers:
Are there any 2-cycles consisting of prime numbers?

For the Fibonacci numbers Fn, and any prime number p, we
have

rp | p2 − 1.

Suppose φF (p) = q and φF (q) = p, for p,q odd primes. Then

q | (p + 1)(p − 1) =⇒ q ≤ p + 1
2

and similarly for p. So

q ≤ p + 1
2

, p ≤ q + 1
2

.

So the answer is NO.
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Elliptic divisibility sequences

Definition
Let E/Q be an elliptic curve and let P ∈ E(Q) be a non-torsion
point. The elliptic divisibility sequence (EDS) associated to the
pair (E ,P) is the sequence of positive integers Dn for n ≥ 1
determined by

x
(
[n]P

)
=

An

D2
n
∈ Q

as a fraction in lowest terms.
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Index divisibility in an EDS

Example

Dn : 1,1,1,1,2,1,3,5,7,4,23,29,59,129,
314,65,1529,3689,8209,16264,83313, . . .

E : y2 + y = x3 − x , P = (0,0).

S(D) = {1,40,53,63,80,127,160,189,200,320,400,441,443, . . . }.

D40 = 40 · 13526278251270010,
D53 = 53 · 299741133691576877400370757471.



Index divisibility Aliquot Numbers for Elliptic Curves

Index divisibility for EDS

Theorem
Let D be a minimal regular EDS associated to the elliptic curve
E/Q and point P ∈ E(Q).

1. If n ∈ S(D) and p is prime and p | Dn, then
(n→ np) ∈ Arrow(D).

2. If n ∈ S(D) and d is an aliquot number for D and
gcd(n,d) = 1, then (n→ nd) ∈ Arrow(D).

3. If p ≥ 7 is a prime of good reduction for E and if
(n→ np) ∈ Arrow(D), then either p | Dn or p is an aliquot
number for D.

4. If gcd(n,d) = 1 and if (n→ nd) ∈ Arrow(D) and
if d = p1p2 · · · p` is a product of ` ≥ 2 distinct primes of
good reduction for E satisfying min pi > (2−1/2` − 1)−2,
then d is an aliquot number for D.
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Aliquot Number

Definition
Let Dn be an EDS, and let p1, . . . ,p` be an `-cycle for φD. That
is,

pi+1 = rpi for all 1 ≤ i ≤ `,

(define p`+1 = p1). Then p1 · · · p` is an aliquot number.

Fact
p | Dn if and only if [n]P = O (mod p).

• So, if #E(Fpi ) = pi+1 for each i , then the definition is
satisfied.

• An anomalous prime (#E(Fp) = p) is an aliquot number.
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Amicable Pairs
Definition
Let E be an elliptic curve defined over Q. A pair (p,q) of primes
is called an amicable pair for E if

#E(Fp) = q, and #E(Fq) = p.

Example
y2 + y = x3 − x has one amicable pair with p,q < 107:

(1622311,1622471)

y2 + y = x3 + x2 has four amicable pairs with p,q < 107:

(853,883), (77761,77999),
(1147339,1148359), (1447429,1447561).
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Aliquot cycles

Definition
An aliquot cycle of length ` for E/Q is a sequence of distinct
primes (p1,p2, . . . ,p`) such that

#E(Fp1) = p2, #E(Fp2) = p3, . . .

#E(Fp`−1) = p`, #E(Fp`
) = p1.

Example
y2 = x3 − 25x − 8 : (83,79,73)

E : y2 = x3 + 176209333661915432764478x+
60625229794681596832262 :

(23,31,41,47,59,67,73,79,71,61,53,43,37,29)
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Constructing aliquot cycles with CRT

Let p1,p2, . . . ,p` be a sequence of primes such that

|pi + 1− pi+1| ≤ 2
√

pi for all 1 ≤ i ≤ `,

(where p`+1 = p1). For each pi find (by Deuring) an elliptic
curve Ei/Fpi satisfying

#Ei(Fpi ) = pi+1.

By the Chinese remainder theorem, find E/Q such that

E mod pi
∼= Ei for all 1 ≤ i ≤ `.

Then (p1, . . . ,p`) is an aliquot cycle of length ` for E/Q.
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A growth rate question

Question
Let

QE(X ) = #
{

amicable pairs (p,q) such that p,q < X
}

How does QE(X ) grow with X?
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Heuristic

Prob(p is part of an amicable pair)

= Prob(q def
= #E(Fp) is prime)Prob(#E(Fq) = p).

Conjecture of Koblitz:

Prob(#E(Fp) is prime) � 1
log p

,

Conjecture of Sato–Tate:

Prob(#E(Fq) = p) � 1
√

q
∼ 1
√

p
.

Together:

Prob(p is part of an amicable pair) � 1
√

p(log p)
.

QE(X ) �
√

X
(log X )2
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Conjectures

QE(X ) = #
{

amicable pairs (p,q) such that p,q < X
}

Conjecture (Version 1)
Assume infinitely many primes p such that #E(Fp) is prime.

Then
QE(X ) �

√
X

(log X )2 as X →∞,

where the implied constants depend on E.

Unfortunately, Andrew Sutherland has only been able to find
117 amicable pairsless than 1012 on y2 + y = x3 + x2.
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Another example

y2 + y = x3 − x has one amicable pair with p,q < 107:

(1622311,1622471)

y2 + y = x3 + x2 has four amicable pairs with p,q < 107:

(853,883), (77761,77999),
(1147339,1148359), (1447429,1447561).

y2 = x3 + 2 has 5578 amicable pairs with p,q < 107:

(13,19), (139,163), (541,571), (613,661), (757,787), . . . .
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CM case: Twist Theorem

Theorem
Let E/Q be an elliptic curve (j 6= 0) with complex multiplication.
Suppose that p and q are primes of good reduction for E with
p ≥ 5 and q = #E(Fp).

Then either

#E(Fq) = p or #E(Fq) = 2q + 2− p.

Remark: In the latter case, #Ẽ(Fq) = p for the non-trivial
quadratic twist Ẽ of E over Fq.
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Pairs on CM curves
(D, f ) (3,3) (11,1) (19,1) (43,1) (67,1) (163,1)

X = 104 18 8 17 42 48 66

X = 105 124 48 103 205 245 395

X = 106 804 303 709 1330 1671 2709

X = 107 5581 2267 5026 9353 12190 19691

Table: QE(X ) for elliptic curves with CM

(D, f ) (3,3) (11,1) (19,1) (43,1) (67,1) (163,1)

X = 104 0.217 0.250 0.233 0.300 0.247 0.237

X = 105 0.251 0.238 0.248 0.260 0.238 0.246

X = 106 0.250 0.247 0.253 0.255 0.245 0.247

X = 107 0.249 0.251 0.250 0.251 0.250 0.252

Table: QE(X )/NE(X ) for elliptic curves with CM
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Conjectures

QE(X ) = #
{

amicable pairs (p,q) such that p,q < X
}

Conjecture (Version 2)
Assume infinitely many primes p such that #E(Fp) is prime.

(a) If E does not have CM, then

QE(X ) �
√

X
(log X )2 as X →∞,

where the implied constants depend on E.

(b) If E has CM, then there is a constant AE > 0 such that

QE(X ) ∼ AE
X

(log X )2 .
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